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Introduction 
Among unintentional injuries, the World Health Organization 

[1] identified falls as part of the leading causes of death and, in less 
dangerous cases, provoking immobility and premature nursing 
home placement. About 37.3 million falls occur every year that are 
serious enough to require medical support and around 646,000 
people die from fall injuries. This situation is even more dangerous 
among elderly people. Frequently, elderly people are alone when 
a fall occurs, either at home or in other situations. Fall detection 
may allow decreasing the time until first aid is performed, reducing 
risks such as hypothermia, bronchopneumonia, dehydration, 
pressure sores and post-fall anxiety syndromes, which could 
compromise any Activity of Daily Living (ADL). Experimental data 
about using sensors to detect falls are encouraging. Sensors gather 
data to effectively detect and confirm falls, and, with a network 
connection, they can easily activate first aid and rescue procedures. 
Fall detection is being widely researched, and numerous fall 
detection systems have been created, but no specific method has 
been standardized or accepted globally [2]. This paper proposes 
a fall detection methodology and an application based on the 
use of five sensors: accelerometer, gyroscope, proximity sensor, 
microphone and GPS embedded in smartphones. This research 
targets all elderly people, not only those with limited mobility, but 
also those who want to use the application for prevention purposes, 
even if they are not currently concerned with fall events and have 
an independent lifestyle that includes outdoor activities.

For this reason, the proposed application does not include any 
technology installed in a specific location (i.e., ambient sensors) 
or wearable sensors. Indeed, elderly people, who does not have 
mobility problems, usually carry out activities alone and outdoor 
(for example going out to the grocery store). An elderly person 
rejects typically the idea of living by always wearing special devices 
that monitor her or his activities 24 hours a day; the smartphone 
is the type of device that could be mostly accepted because it is 
already part of people’s daily lives. Back to the example, an elderly 
person could pick up her or his phone and go out. On the way to 
the grocery store, he could face an emergency, such as tripping 
over a manhole, and could have difficulty asking for help because 
she or he could be alone or unconscious. Furthermore, we had the 
intention of pursuing a limited data exchange between the device 
and the network both to make the system more efficient and to 
avoid privacy problems. Before detailing the description of the 
proposed application, we provide an analysis of the literature about 
fall detection. There are several studies discussing fall detection, as 
mentioned before. Fall detection systems can be grouped into the 
following categories: ambient-based, wearable and devices sensor-
based, and hybrid that use a combination of both sensors (ambient 
and wearable) [3-5].

Ambient sensors used for fall detection mainly include floor 
sensors, microphones, infrared sensors, cameras and microwave 
motion detectors. Floor sensors are pressure sensors (piezoresistive 
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or resistive) or a sensor pad/mat [6]. D Litvak, et al. [7] developed a 
fall detection system based on pattern recognition techniques using 
an accelerometer and microphones placed on the floor. The system 
could distinguish between a human or an object falling and Activity 
of Daily Living (ADL). Popescu, et al. [8] used a set of microphones 
consisting of a linear array of electret condenser acoustic sensors 
installed vertically to capture sound height information. Yun Li, et 
al. [9] proposed an acoustic system based on a circular microphone 
array and a data processing software that recognize the sound 
source and classify the sound as Fall or non-fall. Popescu, et al. [10] 
studied a system composed of four sets of two Passive InfraRed 
(PIR) sensors on vertical support. It takes advantage of measuring 
infrared light wavelengths: the human body has a specific measure 
of reflection, and a fall can be recognized by its specific pattern 
using a hidden Markov model. Ariani, et al. [11] used a wireless 
sensor network that emulates a Dual-Technology Sensor (DTS) 
motion detector, a hybrid sensor that combines PIR and microwave 
motion detectors and pressure mats. 

Thome, et al. [12] used a camera approach, providing a 
theoretical analysis to define the optimal camera placement for 
detecting people falling in unspecified situations; they proved that 
two cameras are sufficient in practice. Fern’dez-Caballero, et al. [13] 
based their project on actuators and sensors (like an accelerometer 
and IR – InfraRed sensors) combined with image processing. Yu, et 
al. [14] proposed a detection system based on posture recognition 
using a single camera combined with a directed acyclic graph 
support vector machine for posture classification. Liang Liu, et al. 
[15] investigated different microwave sensor positions (floor, wall 
and ceiling) in two different experimental configurations. Many 
experiments made use of skin and wearable sensors with dedicated 
hardware, and recently, other experiments made use of smartphone 
sensors. Ren and Peng [6] have done a systematic analysis of fall 
detection and prevention technologies. Wearable and devices 
sensors (such as sensors embedded in smartphones) used for fall 
detection include accelerometers, gyroscopes, etc. Most research 
was focused on sensors applied directly to the skin or people’s 
clothing/shoes. Bourke, et al. [16] presented eCAALYX, which is a 
wearable sensor system composed of health and mobility sensors; 
they use a one-axis accelerometer to detect a fall. Niazmand, et al. 
[17] presented a garment, a pullover “with integrated acceleration 
sensors, evaluation and control electronics.” The system measures 
the acceleration of the torso and the arms. Sim, et al. [18] proposed 
an alternative position for the accelerometer: shoes. They calculate 
the change in acceleration values to recognize falls and ADLs. 
Narasimhan, et al. [19] developed an adhesive sensor system 
composed of a tri-axial accelerometer, a microcontroller and a 
Bluetooth Low Energy transceiver, worn on a subject’s torso. Park, et 
al. [20,21] introduced a system composed of a 3-axis accelerometer, 
a 2-axis gyroscope, digital compasses or clinometer. 

Tolkiehn, et al. [22] proposed a waist-worn sensor consisting of 
a 3-axis accelerometer and a barometric pressure sensor to detect 
a fall and its direction. Many research works used sensors already 
embedded in smartphones. He, et al. [23] proposed a solution with 
a waist-mounted smartphone that used the built-in accelerometer 
to detect falls. Lee, et al. [24] proposed a system using a tri-axial 
accelerometer embedded in a smartphone to distinguish fall events 
from ADLs considering the four directions of the falls (lateral, left 
and right, frontal, backwards). The measurements of variables 
returned by the sensors (usually one or two) indicate whether a fall 
event has happened or not. The results described in the cited works 
are obtained through experiments set in a laboratory. Ambient 
sensors are set up within a specific place/ambient, while the 
wearable/smartphone sensors collect and return data related to a 
specific person [25]. Another difference lies in the fact that ambient 
sensors are generally used indoors and are mainly for people that 
live in a controlled environment. In contrast, wearable/smartphone 
sensors are applicable both indoors and outdoors and can be used 
by people that have a more independent life. Wearable sensors have 
better results than sensors embedded into smartphones. However, 
people perceive skin and wearable sensors as foreign objects. 
Moreover, Kosse, et al. [26] observed that acceptance for fall 
detection sensor systems is not universal, using an analysis of some 
studies reporting positive cases. Other studies report somewhat 
mixed results in terms of incorporating sensor systems in care [27]. 
Smartphones are widely available; indeed, 3.5 billion people own 
smartphones in 2020 [28]. 

These devices are widely used and can be easily applied to detect 
falls. They can be used out of any clinical or wired environment, 
in any situation that is part of daily life and without any added 
equipment. Wearable sensors, in particular accelerometers 
(the most frequently used), applied to the skin usually perform 
better than sensors embedded in smartphones. Still, they are not 
practical and accepted because they are not integrated into the 
human body. The latest generation of smartphones is generally 
equipped with a variety of sensors such as an accelerometer, a 
gyroscope, a microphone, GPS and a proximity sensor. Hawley-
Hague et al. suggest that acceptance of using sensors should be 
improved by making the usefulness of their adoption evident in 
terms of “…potential benefits such as independence, increased 
safety, convenience, increased social opportunities” [29]. The 
study underlines the users’ need to maintain control over the use 
of technology, especially in regard to ambient sensors, which can 
cause more serious privacy issues. With these considerations and 
reflecting on the fact that most seniors lead an active life, this paper 
(as already explained before) focuses mainly on using smartphone 
sensors to collect data that indoor sensors cannot. Moreover, this 
research targets all elderly people who want to use the application 
for preventive purposes, even if they are not currently concerned 
with fall events.
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This paper starts with the idea of holistically using data collected 
by five sensors to detect and evaluate fall events and consequently 
activating first aid and rescue procedures. Indeed, it proposes the 
combined use of three sensors (accelerometer, gyroscope and 
microphone) to detect falls indoors and outdoors, the use of the 
GPS to determine the position of the subject in outdoor/indoor 
applications and the use of the proximity sensor to determine the 
state of the fallen person in order to organize first aid activities. 
There are two approaches to elaborate data gathered from the 
wearable/smartphone sensors for fall detection: threshold-based 
systems and machine learning-based systems [30,31]. Threshold-
based algorithms use a predefined fixed value to decide on a 
specific event; they require less computational power and are 
also less complex than other sophisticated algorithms [32]. The 
performance and accuracy of this kind of approach largely depend 
on threshold value tuning. Machine learning-based technologies 
produce results which can be considered similar to outcomes 
provided by threshold-based approaches [33,34]. Nevertheless, 
threshold-based algorithms have been popular because of their 
low computational overhead and complexity, while the machine 
learning approaches require high consumption of resources.

This paper describes the model and the software application 
for fall detection as it is defined and built. It takes advantage of five 
different sensors embedded in smartphones, removing the need 
to install ad-hoc sensors on the human body. This will result in 
wider acceptance of the application, as the target users already use 
the smartphone. In particular, the five smartphone sensors’ data 
provide information that is useful for the detection and evaluation 
of probable fall events and, consequently, for activating the first aid 
process. All data are collected and computed on the smartphone; 
the communication flow is open only when a fall event is detected. 
This enables to minimize any privacy challenge. This work aims to 
contribute to the studies conducted so far by proposing a system 
that uses many different sensors embedded in smartphones and 
testing it on a range of types of falls, as explained in section III.

The Main Contributions of this Paper are the following

A.	 discussing how sensors built into a smartphone can be 
combined to detect and manage falls, without the need for ad-
hoc hardware.

B.	 analyzing data acquired from different sensors and how to 
combine them. 

The Main Advantages of using Smartphone Sensors are 
the following

A.	 They can be used by people from different ages that already 
have the device. Even if someone is not already interested 
in wearable sensors for fall detection, it can be used in the 
present or in the future for this scope.

B.	 The solution does not require any specific hardware (with 
related costs); any necessary hardware is already embedded 
in smartphones.

C.	 Beyond sensors, every smartphone provides an integrated 
communication channel; this supports and facilitates fast 
management of falls, notifying relatives and friends. 

D.	 The solution is less invasive and more likely to be accepted 
because it does not modify peoples’ habits.

E.	 Data can be managed and elaborated by the smartphone and it 
will be used to facilitate a rescue only if a fall is detected.

The Use of Smartphones also has the following 
Disadvantages

A.	 They have lower performance than body and wearable 
sensors. The few laboratory tests on smartphones’ sensors 
report that applications based on smartphone sensors show 
performance about 15-20% lower than the ones based on 
body and wearable sensors.

B.	 They have variability in context conditions. Unlike body and 
wearable sensors, smartphone sensors face working conditions 
that can create variability in the detected values. Smartphones 
can be worn or carried in many different ways: at the belt, in 
the pocket, in hand, etc. These operative conditions influence 
the parameters used to detect falls, introducing uncertainty.

The previously cited disadvantages of using smartphones 
rather than wearable sensors have been mitigated by combining 
the inputs from five sensors embedded in a smartphone (fewer 
wearable sensors are generally used). The paper has the following 
organization. The next section will give the materials and methods 
used for detecting falls. It will describe the rescue process, 
including the system (based on PLAKSS - PLAtform for Knowledge 
and Services Sharing) components that is activated in case of falls. 
Section III describes the tests and their results; section IV provides 
a discussion by mapping experimental data and the three sensors’ 
thresholds (accelerometer, gyroscope and microphone). Finally, 
section V concludes the paper.

Materials and Methods
As explained in the previous section, some literature studies 

describe systems that collect data from smartphone sensors, such 
as accelerometer or gyroscope. Aiming to mitigate the smartphone 
sensors performances weaknesses, this paper presents the results 
obtained using the fall detection process that we propose by 
combining data from smartphone sensors, in order to maximise 
the detection of fall events and, at the same time, reduce the 
problem of overfitting (i.e., filtering out false-positive), which could 
unnecessarily trigger phone calls and the rescue processes.
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Method for Detecting Falls

The process of detecting falls consists of two phases: detection 
and rescue, summarised in Figure 1. The detection phase has, as 
input, a real-time data flow coming from the smartphone’s built-in 
sensors, i.e., the accelerometer, the gyroscope and the microphone. 
The algorithm analyses data flows to detect combinations of the 
three sensors’ thresholds by comparing the fall matrix (see Section 

IV). If the comparison detects a fall, the rescue phase is activated. 
In this phase, the system sends an emergency message to rescuers; 
this message also contains the data from the other two sensors, 
the GPS and the proximity sensor, to enrich the knowledge of the 
fall situation. The designed algorithm has been implemented in 
an Android app. The following subsections provide a detailed 
description of how the three sensors gather and process data flows.

Figure 1: The process of fall detection and rescue.

Accelerometer: The accelerometer sensor returns values of 
acceleration along the three axes x, y, z. It measures the acceleration 
Ad applied to the device, considering the gravity force g and the 
other forces F that are applied to the sensor. The accelerometer’s 
vertical dimension is calibrated to have a value equal to 9.8 m/s2 
to take gravity into account and measure acceleration correctly. 
This is the value provided by the sensor when the smartphone 
is motionless. Subsequently, the algorithm, developed on a 
smartphone app, calculates the Signal Magnitude Vector (SMV), 
also referred to as the Sum Vector (SV). In this way, the movement 
intensity is computed using this physical magnitude, depicted by 
equation (1). 

Signal Magnitude Vector= 
22 2

x y zA A A+ + 	 (1)

Ax, Ay and Az represent signals according to the x, y and z 
components, respectively. We use the SMV to identify a probable 
fall event by deriving acceleration peak thresholds. Therefore, if 
a device is placed on a table with the screen facing upwards, it is 
possible to infer that:

a.	 Pushing the smartphone to the right causes a positive x 
acceleration value,

b.	 Pushing the smartphone forward causes a positive y 
acceleration value,

c.	 Pushing the smartphone upwards with an acceleration, A, 
causes the z value of the acceleration to be equal to A+9.8 m/
s2, because gravitational acceleration is also considered, 

d.	 When the device is in free Fall, it undergoes a rapid acceleration 
towards the ground of 9.8 m/s2, and the accelerometer will 
measure an acceleration (2). 

20 mg
s

= 		  (2)

When a fall occurs, it is possible to observe that the acceleration 
suddenly decreases and then increases again, with a fast sequence 
of a peak close to zero (lower peak) and an upper peak in rapid 
succession (see Figure 2).

Several experiments have been done to identify the optimal 
threshold values: Figure 2 represents the average evolution of the 
SMV value, obtained during several tests. As already explained, a fall 
event is characterized by a rapid fluctuation of the SMV around the 
value of 9.8 m/s2. The SMV suddenly decreases towards a minimum 
value and then increases towards a maximum value. Through peaks 
values analysis, we observed that the minimum value was in a range 
from 2 to 4 m/s2 ”, while the maximum value was in a range from 14 
to 17 m/s2. For this reason, we decided to use these experimentally 
obtained threshold values as input for the fall detection algorithm. 
Furthermore, it is possible to determine a timestamp (at around 1.5 
seconds in Figure 2 associated with the beginning of the Fall based 
on the acceleration samples, in order to synchronize the samples 
collected from the different sensors. The fall time window starts 
1.5 seconds before the timestamp mentioned above and ends 8.5 
seconds after that (this time window includes four phases: free Fall, 
potential impact, post-fall and immobility).
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Figure 2: Evolution of the acceleration during a fall.

The samples frequency influences the precision in detecting 
threshold overcoming. High samples frequency detects all the peaks 
but causes more battery consumption; on the other hand, fewer 
samples frequency reduces battery consumption, but some peaks 
can be lost. Experiments and validations have been done to fix 
the optimal samples frequency: four different sample frequencies 
(fs = 1/5; 3; 6; 12 [SPS]) have been considered and analyzed in 
the 10 seconds time frame around the potential Fall. After the 
experiments, we observed that the best option was six samples 
per second. The fall event is detected when the lower bound and 

the upper bound mentioned above are exceeded over the range of 
four consecutive samples. These values have been chosen to obtain 
the best compromise between acquiring the relevant information 
(that must not be lost) and lowering energy consumption due to 
data overhead. The flow chart, described in Figure 3, shows the 
algorithm used to detect acceleration features of an accidental 
fall. During the “Sampling” phase, the device performs periodic 
monitoring of the person’s activity. Monitoring continues until 
a change in acceleration is observed, and in particular, until the 
acceleration value becomes lower than Smin. 

Figure 3: Flow-chart for detecting acceleration features that characterise an accidental fall.
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After the detection of an acceleration value lower than 
Smin, the relative time window begins (Free falling phase), and, 
during this timeslot, data streams are analyzed to determine if 
the characteristics of free Fall occur, i.e., if there is a decrease 
in acceleration up to a value close to zero, followed by a sudden 
increase in the acceleration value until it exceeds the threshold 
Smax. If the described sequence does not occur, the device returns 
to the “Sampling” state. Instead, if the observed acceleration values’ 
characteristics are those of free Fall, the device goes into a state 
of “Potential impact”. Then the “potential impact time window” 
begins. During this timeslot, a control starts to check if there are 
sudden changes in acceleration, which would indicate that the 
person is doing other activities (sitting, running, etc.). No checks 
are done on the threshold value Smax, because during the Fall this 
threshold might be exceeded several times: the person falling can 
hit the ground with different parts of his body at different times. 
Therefore, if the condition of an acceleration value greater than the 
minimum threshold occurs at the end of the post-fall time window, 
the state “Sending fall” is enabled. This means that the collected 
data will be sent to a server that will carry out further evaluations 
to confirm (or not) the Fall. To reduce the number of false alarms 
without increasing the linear computational effort, we decided to 
evaluate not only the accelerometer data but also data streams 
originated by the gyroscope and the microphone.

Gyroscope: The gyroscope sensor produces angular speed 
data along the three axes x, y, z. These data are used in equation (3) 
to get the speed of rotation of a body:

( )22 2
x y zω ω ω ω= + + 			   (3)

ωx
2, ωy

2, ωz
2 are the angular speeds along the three axes x, y, z, 

and the values are measured in degree/s. The fall event is observed 
by the algorithm based on acceleration samples and associated with 
a timestamp. To synchronize the data streams from the different 
sensors, samples from 1.5 seconds before the fall timestamp to 8.5 
seconds after it are taken into account. During the Fall, the maximum 
value of the angular speed is detected. Two threshold values are 
considered. The first threshold value is associated with the first half 
of the 10 seconds interval in which the maximum angular velocity 
is detected. In the second half of the interval, if the Fall occurs, 
substantial immobility will be observed. The immobility implies 
that the angular velocity values should be lower than the minimum 
threshold. Through peaks values analysis, we observed that the 
minimum value was in a range 60 degree/s to 180 degree/s while 
the maximum value was in a range 200 degree/s to 320 degree/s. 
We decided to use these experimentally obtained threshold values 
to confirm the fall event.

Microphone: The microphone acquires the intensity of the 
noise produced during the Fall. The samples of the data acquired 
by the microphone are analyzed only if the accelerometer detects 

the features of a fall. To synchronize the samples collected from the 
different sensors, microphone samples from 1.5 seconds before 
the fall timestamp to 8.5 seconds after it are taken into account. 
The samples obtained during the experiments come from the 
microphone embedded in the smartphone. The Android APIs 
provide the MediaRecorder.getMaxAmplitude() method. This 
method returns the absolute value of a 16-bit integer (unsigned 16-
bit integer value) between 0 and 32767. These values cannot be 
related to any specific and calibrated physical measurement unit. 
Therefore, these values are only 16-bit digitization of an electrical 
output that varies between 0 and 100%, where 100% corresponds 
to the maximum microphone voltage level. The values that this 
method reports are related to the sound pressure but differ from 
device to device. Therefore, the relative thresholds were derived 
experimentally using two different devices. It was possible to 
confirm that the output values generated belong to the same range 
in the case of these two devices. The values adopted belong to a 
reference scale from 0 to 12, where 0 corresponds to the value 0 
returned by the MediaRecorder.getMaxAmplitude() method, and 
12 corresponds to 32400. Each interval in the reference scale has a 
length of 2700 in terms of the values returned by the MediaRecorder.
getMaxAmplitude() method.

Proximity Sensor: The proximity sensor collects samples 
of the proximity before, during, and after detecting the fall event. 
In the experimental tests, smartphones with binary (near, far) 
proximity sensors have been used.

GPS: The values of the coordinates are sent to the parents and 
first aid rescuers in order to locate the patient and allow assistance 
to be provided.

The Rescue Processes
In the case of confirmation of a fall, the system sends an alarm 

to family members and/or health assistants, and sends the patient’s 
data to be rescued. GPS also sends the location of the fall event. 
The message also contains the state change of the smartphone 
proximity sensor, through which it is possible to determine whether 
the smartphone is close to the patient or not. Indeed, in the event 
of a fall, the proximity sensor can detect if the smartphone screen 
is in contact with some object; for example, a device could be in 
the person’s pocket or bag (state = 1), and as a consequence of the 
Fall the smartphone could come out and fall down. In this case, the 
display, at least for a short time, could change the state (from 1 to 
0); this indicates that the patient may be far from the device after 
the Fall. Rescuers receive the emergency alert. They can call the 
patient to check her or his condition; if the person answers, she or 
he can directly provide information about the situation. Otherwise, 
it is assumed that the person is unable to answer, and this can 
imply that the person is in a state of unconsciousness or far from 
the device. 
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The rescue process has the objective to provide rapid assistance 
to the fallen person. The network of a person’s caregivers usually 
involves people (like relatives and friends) who live in close 
proximity to the patient who can provide first aid and assess the 
severity of the injuries.

The implementation of the rescue procedure required the 
configuration of a web platform with specific services. The rescue 
procedure is based on three main services:

a.	 The User-Handler is the service called for registration on the 
platform and for the login access to activate the service. Each 
person can disable the service based on her or his preferences.

b.	 The Emergency-Handler is the service called when 30 seconds 
have passed, after a fall has been detected, without any input 
from the user (see Figure 4) or when the user presses the 

SOS button (see Figure 2). This service sends a message to 
a relative’s/friend’s or a caregiver’s smartphone through 
the Google Messaging Cloud (GMC) system containing the 
information related to the patient and type of emergency. 

The System in Action

On the patient side, i.e., on the smartphone, an app continuously 
runs in the background after a login procedure, gaining data from 
the sensors. Figure 4 shows different screenshots of the smartphone 
app. The login page (a) enables the activation (b) of the continuous 
monitoring (c) If a Fall occurs, the app shows an alarm page with 
red and green buttons (d) where the user can confirm or disable 
the alarm. If the user confirms the emergency request or after 30 
seconds, the app shows the sent emergency page (e) As represented 
in Figure 5, there are four possibilities: 

Figure 4: Different screenshots of the app on the smartphone.

Figure 5: Different app states during monitoring and fall detection.
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a.	 The patient has fallen and is unconscious—the smartphone 
displays the buttons on the screen, emitting the emergency 
sound. After 30 seconds without any interaction, it sends an 
alarm to the caregiver’s (relatives, doctors, etc.) smartphone. 
This message contains the GPS position, the fallen person’s 
data and the change of state of the proximity sensor, through 
which it is possible to infer whether or not the smartphone is 
near the patient.

b.	 The patient fell; she or he is conscious and needs help-the 
smartphone displays the buttons on the screen, emitting 
the emergency sound. If the patient presses the red button, 
the device immediately sends an alarm to the caregiver’s 
smartphone. As described above, the message contains GPS 
position, patient data and the state of the proximity sensor. 

c.	 The person has not fallen, but the device detects a fall event 
(false positive). In this case, the patient can press the green 
button to disable the emergency procedure. 

d.	 The person has fallen, but she or he does not need any kind of 
assistance. In this case, the patient can press the green button 
to disable the emergency procedure.

e.	 Depending on the user’s actions (or if there is no action), 
the system will change the state from Alarm to Listening or 
Management.

Results 
The application acquires and analyses three streams of 

data on the smartphones for assessing a fall: the streams of the 
accelerometer, gyroscope and microphone (GPS and proximity 
sensor are used to support the first aid and rescue phase). If a fall is 
detected, a rescue procedure is activated. The first aid request is the 
only case of data transmission to the server. Indeed, the proposed 

methodology avoids to send all the data stream in a continuous 
cycle: this choice has been made to limit battery consumption 
and privacy issues. It has been demonstrated that “a single 
accelerometer sensor at 200 Hz generates about 2.3 GB of data per 
day, the more the sensors or monitoring metrics are added, the more 
the data are generated by the sensors” [35]. If all these data have to 
be uploaded to the cloud for analytics or sent to a server as an input 
for machine learning approaches, it would result in a wastage of 
network bandwidth, high consumption of the smartphone battery, 
a decrease in response time and efficiency and a continuous activity 
monitoring that lead to user’s privacy deprivation.

Experimental Setting

Falls are very relevant from the epidemiological point of 
view due to their consequences (the fifth leading cause of death); 
however, fall events are quite rare and difficult to detect in a real-life 
environment. Consequently, it is difficult to collect real data. Only 
some studies collected fall data in real-life environments in order 
to analyze the acceleration values during falls. The work of Bai, et 
al. [25] brought out differences between real and simulated falls 
and described how to obtain, in laboratory tests, simulated fall data 
comparable to real fall data. For this reason, our laboratory tests 
have been set up, taking into account the studies and the results 
described in [25]. The steps followed for setting up the experiments 
are listed below: 

a.	 The equipment chosen for the experiments includes five 
sensors built into smartphones (accelerometer, gyroscope, 
proximity sensor, microphone and GPS) that acquire and 
gather data, which, when properly processed, can be useful 
for detecting and assessing a fall (Figure 6). Such sensors 
have different operating conditions, roles and relevance when 
detecting and assessing a fall. 

Figure 6: Smartphone sensors useful in a fall detection process.
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b.	 We considered two possible positions for the smartphone: in a 
pocket or using a support hooked to a belt. Twenty-five people 
with various characteristics were selected to participate in 
the experiment. There were twelve women and thirteen men 
with various weights, and ages from 20 to 45 years. The data 
samples were collected from healthy subjects as experiments 
of simulated falls by senior citizens may be improper and 
dangerous. This setting is conventional in literature; it could not 
reflect senior citizens’ activities, but it represents the first step 
before testing the application on a large scale and everyday life 
that can require a very long period (one or more years). Data 
samples from senior and in real life need to be investigated in 
the future to identify any potential discrepancies.

c.	 100 tests per person have been conducted, divided into 50 falls 
and 50 ADL events.

d.	 The activity of the initial setting of the parameters (variables 
related to each sensor) for detecting falls took into account the 
experiments of Klenk, et al. [36].

e.	 Preliminary data and literature data allowed us to adjust the 
parameters. 

The tests involved twenty-five people simulating 50 falls (on 
mats) each-one, with 1250 falls in total. The types of performed 
falls aim, as much as possible, to simulate the most common falls 
occurring in the elderly population. Lord et al. claim that 82% of 
falls occur from a standing position. Therefore, the falls examined 
explicitly during this phase were originated from an upright position 
and continued in all directions (forward, backward, lateral). 

The types of falls analyzed are detailed below: 

a.	 Forward: A fall in the direction of walking, causing an impact 
on the pelvis. 

b.	 Backwards: A fall due to a slip, opposite to the direction of 
walking, causing an impact on the back. 

c.	 Lateral: A fall due to simulated fainting, collapsing on legs, 
causing an impact on the hip.

d.	 Forward on knees: A fall in the direction of walking, causing an 
impact on the knees.

At the same time, participants were also asked to carry out some 
daily activities (ADL) to produce inputs with values similar to those 
collected when a fall occurs, creating false alarms. Some examples 
of these activities are sitting on a sofa, lying down on a bed and 
running up the stairs. 1250 daily activities have been collected, or 
50 for each person participating. In these experiments, people had 
the smartphone in their pocket.

Experimental Data

The tests addressed the necessity of identifying optimal settings 
of the data detected by the sensors for different smartphones, with 

the aim of maximizing sensitivity, specificity and accuracy. The data 
collected concern all five sensors, but a specific analysis has been 
done on the accelerometer, the gyroscope and the microphone to 
set the best operative parameters related to the fall detection phase. 
This enabled us to establish the most suitable trade-off between 
minimum and maximum threshold variation. This subsection 
illustrates the data collected from the accelerometer, gyroscope 
and microphone, considering different possible thresholds and 
different classification values (i.e. True Negative, False Negative, 
True Positive, False Positive), and evaluating sensitivity, specificity 
and accuracy. The data collected are analyzed to understand which 
combinations of thresholds are associated with fall detections, and 
which combinations are associated with ADL.

Data and Thresholds: The first objective is to select the 
threshold values that activate the process of fall evaluation. From 
Tables 1 & 2, it is possible to observe how incrementing the 
maximum threshold (keeping the minimum constant) decreases 
the sensitivity but increases the specificity. Analogously, if the 
minimum threshold is decremented, the sensitivity decreases and 
the specificity increases. The impact on the practical use of the fall 
detector is that if the settings prioritize the objective to detect any 
fall, it is necessary to manage many false falls. When choosing the 
threshold values, it is also necessary to consider that a fall event 
is relatively rare; at the same time, false alarms produced by daily 
activities can be quite frequent. On the contrary, if the settings 
prioritize reducing false alarms, the system detects a smaller 
percentage of true falls. 

Table 1: Variables analysed for threshold variation for the 
accelerometer, the gyroscope and the microphone.

Variable Explanation

TN = True Negative Number of false instances 
classified as false.

FN = False Negative Number of true instances classified 
as false.

TP = True Positive Number of true instances classified 
as true.

FP = False Positive Number of false instances 
classified as true.

Sensitivity= [TP/(TP+FN)] * 100
Percentage of true correctly 

classified with respect to the total 
true instances.

Specificity= [TN/(TN+FP)] *100
Percentage of false correctly 

classified with respect to the total 
false instances.

Accuracy = [(TP + TN) / total 
instances] * 100

Percentage of true and false 
correctly classified for the total 

instances.

Accelerometer: The first set of experiments allowed us to 
establish that better values are obtained with a minimum threshold 
value of around 3 m/s2 and a maximum threshold value of about 
15 m/s2 (see Figure 2). For this reason, the tests were conducted 
with minimum threshold values of about 3 m/s2 (range 2–4) and 
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maximum threshold values of about 15 m/s2 (range 14–17). Tables 
2 & 3 summarize the results obtained using different threshold 
values for the accelerometer. The data show that lowering the 
minimum threshold produces a loss of sensitivity, i.e., fewer falls are 
detected (false negatives are present). When the threshold is raised, 
more falls are detected, but many false positives are generated. 

On the other hand, high values of the maximum threshold cause 
a decrease in sensitivity and an increase in specificity. Decreasing 
the maximum threshold value causes the sensitivity to increase, 
i.e., more falls are detected. At the same time, however, specificity 
decreases, i.e., more false positives are generated.

Table 2: Classification values for different thresholds with an accelerometer.

THRESHOLD VALUE TN FN TP FP

MAX=14 MIN=2 819 406 844 431

MAX=14 MIN=3 813 69 1181 437

MAX=14 MIN=4 550 19 1231 700

MAX=15 MIN=2 1100 631 619 150

MAX=15 MIN=3 1082 112 1138 168

MAX=15 MIN=4 881 31 1219 369

MAX=16 MIN=2 1131 656 594 119

MAX=16 MIN=3 1107 287 963 143

MAX=16 MIN=4 926 212 1038 324

MAX=17 MIN=2 - - - -

MAX=17 MIN=3 1219 500 750 31

MAX=17 MIN=4 - - - -

Table 3: Measured values of sensitivity, specificity and accuracy for different values of the thresholds.

THRESHOLD VALUE Sensitivity Specificity Accuracy

MAX=14 MIN=2 67.52% 65.52% 66.52%

MAX=14 MIN=3 94.48% 65.04% 79.76%

MAX=14 MIN=4 98.48% 44.00% 71.24%

MAX=15 MIN=2 49.52% 88.00% 68.76%

MAX=15 MIN=3 91.04% 86.56% 88.80%

MAX=15 MIN=4 97.52% 70.48% 84.00%

MAX=16 MIN=2 47.50% 90.48% 69.00%

MAX=16 MIN=3 77.04% 88.56% 82.80%

MAX=16 MIN=4 83.04% 74.08% 78.56%

MAX=17 MIN=2 - - -

MAX=17 MIN=3 60.00% 97.52% 78.76%

MAX=17 MIN=4 - - -

Gyroscope: The experiments performed have shown that 
the samples taken during the 10 second window can be divided 
into two temporal windows that can be associated with the first 
phase of a fall (which also includes the sample related to the fall 
event observed by the algorithm) and the second phase, i.e., the 
post phase of the Fall. In the first phase, the first 150 samples are 
analyzed to extract the maximum value. During this phase, a sample 
must have an angular speed up to the maximum threshold. During 
the second phase, it is assumed that the patient is motionless on 
the ground, and the angular speed is lower than a threshold value; 

if this condition is verified, the data gathered from the gyroscope 
confirm the fall event. Also, in this case, if we set the gyroscope to 
detect any fall, it is necessary to manage many false falls. It is also 
essential to consider in the choice of the threshold values (similarly 
to the accelerometer) that a fall event is relatively rare, while normal 
activities that could create false alarms are quite frequent. On the 
contrary, if we set the gyroscope to reduce false alarms, the system 
detects a smaller percentage of true falls. Tables 4 & 5 display the 
results obtained using different threshold values for the gyroscope.
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Table 4: Classification values obtained with a gyroscope for different thresholds.

THRESHOLD VALUE TN FN TP FP

MAX=200 MIN=60 932 521 729 318

MAX=200 MIN=120 870 471 779 380

MAX=200 MIN=180 700 415 835 550

MAX=260 MIN=60 970 810 440 280

MAX=260 MIN=120 907 759 491 343

MAX=260 MIN=180 801 709 541 450

MAX=320 MIN=60 1001 1079 171 249

MAX=320 MIN=120 945 1041 209 305

MAX=320 MIN=180 882 1004 246 368

MAX=340 MIN=60 1026 1079 171 224

MAX=340 MIN=120 970 1041 209 280

MAX=340 MIN=180 914 1004 246 336

Table 5: Measured values of sensitivity, specificity and accuracy for different values of the thresholds with a gyroscope.

THRESHOLD VALUE Sensitivity Specificity Accuracy

MAX=200 MIN=60 58.32% 74.56% 66.44%

MAX=200 MIN=120 62.32% 69.60% 65.96%

MAX=200 MIN=180 66.80% 56.00% 61.40%

MAX=260 MIN=60 35.20% 77.60% 56.40%

MAX=260 MIN=120 39.28% 72.56% 55.92%

MAX=260 MIN=180 43.28% 64.08% 53.68%

MAX=320 MIN=60 13.68% 80.08% 46.88%

MAX=320 MIN=120 16.72% 75.60% 46.16%

MAX=320 MIN=180 19.68% 70.56% 45.12%

MAX=340 MIN=60 13.68% 82.08% 47.88%

MAX=340 MIN=120 16.72% 77.60% 47.16%

MAX=340 MIN=180 19.68% 73.12% 46.40%

Microphone: The experiments on the microphone have been 
conducted using six threshold values (from 6 to 11). In order to 
evaluate microphone data, sensitivity, specificity, and accuracy 
have been calculated for each threshold’s value. When choosing 
threshold values, it is necessary to consider that although a fall 
event is relatively rare, everyday activities that could create false 
alarms are quite frequent. Analysis of real falls shows that an 
average, noisy room can provide amplitude values of sound ranging 
between 2–4, a very noisy room between 5–8. A very loud sound 
is found to have a value greater than 9. The results prove that 

choosing the threshold’s value between 6–8 requires managing 
a more significant number of false positives. On the contrary, 
setting the threshold’s value greater than 10 causes the number 
of false negatives growing dramatically. This proves that with 
these threshold values, the system cuts off real falls. Tables 6 & 7 
show the results obtained using different threshold values for the 
microphone. The threshold values considered in the experiment 
are those in which the specificity is over 40%, and the sensitivity 
is around 90%.

Table 6: Classification values obtained for different thresholds with a microphone.

THRESHOLD VALUE TN FN TP FP

6 337 45 1205 913

7 375 51 1099 875

8 444 70 1180 806

9 550 95 1155 700

10 675 120 1130 575
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Table 7: Values of sensitivity, specificity and accuracy for different values of the thresholds with a microphone.

THRESHOLD VALUE Sensitivity Specificity Accuracy

6 96.40% 26.96% 61.68%

7 87.92% 30.00% 58.96%

8 94.40% 35.52% 64.96%

9 92.40% 44.00% 68.20%

10 90.40% 54.00% 72.20%

Proximity Sensor: The experiments carried out show that 
the samples from this sensor usually are not guaranteed to detect 
the Fall, except for in the (rare) case of a change in the state 
of the proximity sensor. It can provide additional information 
concerning data from other sensors. Indeed, we decided to keep 
this information about the probable positioning of the smartphone 
after the Fall. If the patient wears the mobile phone on his side, 
using a support hooked to his belt, the proximity sensor state 
usually remains unchanged. Experiments have shown that if the 
smartphone disengages from the belt support due to the impact 
of a fall, the value measured by this sensor can have one or more 
variations. If the smartphone is usually contained in the person’s 
pocket or bag, it could come out of the person’s pocket or bag as a 
consequence of a fall, and the display (at least for a short time) may 
not be in contact with any object (pocket, bag). This behavior can 
change with different persons. This information is also significant 
at the time of the rescue because the patient may be conscious but 
may not answer the phone because of her or his distance from the 
device. In the case of a change of state of the proximity sensor, a set 
of less restrictive thresholds is taken into consideration.

Discussion
This section provides a discussion by mapping experimental 

data and the accelerometer, gyroscope, and microphone thresholds. 
The thresholds considered in the accelerometer, gyroscope, and 
microphone tests identify 864 (12*12*6) possible combinations of 
values associated with these three sensors. Based on the results of 
these tests, only 84 combinations are very relevant for detecting 
falls, with a sensitivity of 98% of real falls. These 84 combinations 
(7*6*2) are associated with the thresholds in Tables 2,4 & 7. The 
detection of true falls is very satisfying; however, these combinations 
caused an unsatisfyingly high number of detections of false positives 
(ADL events detected as falls), with a value of specificity of 83.04%. 
Considering the frequency of the ADLs, it is necessary to increase 
the specificity value to avoid an excessive number of false alarms. 
For this reason, starting from the 84 combinations selected, the 
experimental results allowed us to select the map of combinations 
that will give acceptable specificity values. The minimum value 
considered acceptable was 92%. The experimental data have been 
analyzed to select the best map of combinations to acquire the 
acceptable value of specificity and at the same time, to avoid losing, 
as much as possible, sensitivity in detecting real falls. The map of 
combinations shown in Table 8 has been used as an input for the 
fall detection system, and with several tests, in the same conditions 
described above, we obtained a sensitivity value of 89.28%. 

Table 8: Map of the combinations chosen for optimising specificity and sensitivity.

Microphone 
Threshold=9 Gyroscope

Accelerometer MAX=200 MIN=60 MAX=200 
MIN=120

MAX=200 
MIN=180 MAX=260 MIN=60 MAX=260 

MIN=120
MAX=260 
MIN=180

MAX=14 MIN=3

MAX=14 MIN=4

MAX=15 MIN=3

MAX=15 MIN=4

MAX=16 MIN=3

MAX=16 MIN=4

MAX=17 MIN=3

Microphone 
Threshold=10 Gyroscope

Accelerometer MAX=200 MIN=60 MAX=200 
MIN=120

MAX=200 
MIN=180 MAX=260 MIN=60 MAX=260 

MIN=120
MAX=260 
MIN=180

MAX=14 MIN=4

MAX=15 MIN=3

MAX=15 MIN=4
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MAX=16 MIN=3

MAX=16 MIN=4

MAX=17 MIN=3

Table 9: Map of the combinations chosen for optimising specificity and sensitivity.

Method Specificity Sensitivity

[25] N/A N/A

[22] 85.24% 87.77%

[23] N/A N/A

[21] N/A N/A

[33] 88.57% 89.20%

Our approach 92% 89.28%

The way that we have chosen the combinations in this paper 
is only the first step. Wider experimentation on the field, with 
a large number of users will enable to refine finding the optimal 
combinations. It is important to set up combinations of threshold 
values representing the best solution for sensitivity and specificity. 
Another goal is to create different settings of the cloud of thresholds 
based on users’ features such as weight, age and gender. Then, the 
cloud of values could be adapted based on individually collected 
data. Table 9 compares performances of our methodology with 
[21-23,25,33]. As shown in the following table, not all the cited 
works show measurable results. As compared to [22], our approach 
proposes a more practical system, avoiding additional sensors to be 
worn by the user, which only consists in a smartphone, achieving 
better results in terms of specificity and sensitivity. In the same 
way in [33], the system consists in a wearable device to be worn 
at the waist which detects Fall through the use of a gyroscope and 
an accelerometer: analyzing its results, it can be observed that our 
approach is pretty similar in terms of sensitivity, however it can 
achieve better results in detecting true negatives (with a variation 
of about 3.5% in specificity).

Conclusion
In this study, we developed a fall detection system for elderly 

people using smartphones. Our initial hypothesis was to design 
a fall detection system that is not perceived as invasive, widely 
accepted by people, and based on already existing and used 
technologies. Therefore, we decided to design the application based 
on smartphone sensors to make it available to as many people as 
possible. Indeed, using a smartphone, people do not have to wear 
other devices or sensors; this is a strength for the acceptance by 
the elderly. We developed a fall detection algorithm that uses data 
streams from five sensors (accelerometer, gyroscope, microphone, 
proximity and GPS) embedded in a smartphone. The algorithm 
works with thresholds and time windows. We demonstrated that 
our algorithm can work efficiently using ranges of thresholds 
experimentally defined; it recognizes falls through the combination 
of these ranges of values and streams from gyroscope and 
accelerometer, with further refinements done by microphone and 

proximity sensor. Our system can be used during outdoor activities 
by elderly people, for example. The smartphone, which runs the 
proposed system, monitors user movements through its sensors. 
If a fall occurs, the system recognizes specific conditions, using 
thresholds and time windows, and sends an alarm to the server 
which forwards the first aid request to pre-selected rescuers. As 
already explained, an essential hypothesis that we assumed was to 
respond to the privacy issues and to build a non-invasive system. To 
achieve these objectives, we limited data exchange, using a server 
only for the rescue management procedure; we investigated on 
how to reduce the false positives to avoid many false alarms which 
could induce users to stop using the system. The algorithm has been 
proven to have good performance in terms of sensitivity, specificity, 
accuracy and computational complexity. The algorithm takes about 
6.5 seconds to detect the Fall and collect the necessary data to be 
sent remotely. The entire system takes, on average, less than 1 
minute to ensure that the emergency notification arrives on the 
smartphone of the person responsible for the rescue; these values 
can vary depending on the traffic conditions in the communication 
network.

For future work, many issues need to be further investigated. 
Our algorithm is going to be tested through realistic experiments, 
in a similar way described in [24]: we planned to distribute the 
application on a wider scale to verify its efficacy in everyday life 
activities. This large scale and testing phase will have a duration of 
two years. We planned to test the entire system in real operating 
conditions involving many people, including people whose age 
is greater than the ones we tested on to produce this work. The 
low cost facilitates the activation of the experimentation. The 
experiments will use devices (smartphones) that are already 
available for the population. The testing phase in the field will 
enable both tunings of optimal parameters and the extension 
of the trial over the devices considered during the test phase. 
Finally, regarding emergency management, the combination of IoT 
(Internet of Things) and communication channels can enlarge the 
perspective of safety, and healthcare in the future toward a social 
paradigm, in which smart objects participate as active agents [36-
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38] in collaborative social networks with people (patients, relatives, 
friends and caregivers).This is particularly relevant to senior 
citizens living in their homes [39] or that have an independent 
life. It allows early detection of a fall, a fast verification of the real 
conditions and integrated management of potential emergencies 
based on proximity (involving relatives and friends), competence 
and knowledge[40].

References
1.	 (2020) World Health Organization. Falls, WHO. 

2.	 C Tacconi, S Mellone, L Chiari (2011) Smartphone-based applications for 
investigating falls and mobility, in Proceedings of the 5th International 
Conference on Pervasive Computing Technologies for Healthcare 
(Pervasive Health), Dublin, Ireland pp. 258-261.

3.	 A Ramachandran, A Karuppiah (2020) A survey on recent advances in 
wearable fall detection systems. in BioMed Research International p. 
1-17.

4.	 Nizam Y, Jamil MMA (2020) Classification of Daily Life Activities for 
Human Fall Detection: A Systematic Review of the Techniques and 
Approaches. In: Ponce H, Martínez Villaseñor L, Brieva J, Moya Albor 
E (Eds.)., Challenges and Trends in Multimodal Fall Detection for 
Healthcare. Studies in Systems, Decision and Control, Springer, 273. 

5.	 Singh SU Rehman, S Yongchareon, PHJ Chong (2020) Sensor Technologies 
for Fall Detection Systems: A Review. In IEEE Sensors Journal 20(13): 
6889-6919. 

6.	 L Ren, Y Peng (2019) Research of fall detection and fall prevention 
technologies: A systematic review. In IEEE Access 7(201): 77702-77722.

7.	 Y Zigel, D Litvak, I Gannot (2009) A method for automatic fall detection 
of elderly people using floor vibrations and sound-Proof of concept 
on human mimicking doll falls. In IEEE Transactions on Biomedical 
Engineering 56(12): 2858-2867.

8.	 M Popescu, Y Li, M Skubic, M Rantz (2008) An acoustic fall detector 
system that uses sound height information to reduce the false alarm rate. 
In 2008 30th Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society, Vancouver, BC pp. 4628-4631.

9.	 Y Li, KC Ho, M Popescu (2012) A microphone array system for automatic 
fall detection. In IEEE Transactions on Biomedical Engineering 59(5): 
1291-1301.

10.	M Popescu, B Hotrabhavananda, M Moore, M Skubic (2012) VAMPIR- an 
automatic fall detection system using a vertical PIR sensor array. In 2012 
6th International Conference on Pervasive Computing Technologies for 
Healthcare (PervasiveHealth) and Workshops, San Diego, CA, pp. 163-
166.

11.	A Ariani, SJ Redmond, D Chang, NH Lovell (2012) Simulated unobtrusive 
falls detection with multiple persons. In IEEE Transactions on Biomedical 
Engineering 59(11): 3185-3196.

12.	N Thome, S Miguet, S Ambellouis (2008) A real-time, multiview fall 
detection system: A LHMM-based approach. In IEEE Transactions on 
Circuits and Systems for Video Technology 18(11): 1522-1532.

13.	A Fernndez Caballer, Marina V, Juan SC, Jose C, Veronica M, et al. 
(2012) HOLDS: Efficient fall detection through accelerometers and 
computer vision. In 2012 Eighth International Conference on Intelligent 
Environments, Guanajuato pp. 367-370.

14.	M Yu, A Rhuma, SM Naqvi, L Wang, J Chambers (2012) A posture 
recognition-based fall detection system for monitoring an elderly person 
in a smart home environment. In IEEE Transactions on Information 
Technology in Biomedicine 16(6): 1274-1286.

15.	L Liu, M Popescu, KC Ho, M Skubic, M Rantz (2012) Doppler radar sensor 
positioning in a fall detection system. In 2012 Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, San 
Diego, CA, pp. 256-259.

16.	AK Bourke, Sandra P, Friedrch K, Victor C, Carlos T, et al. (2012) 
Embedded fall and activity monitoring for a wearable ambient assisted 
living solution for older adults. In 2012 Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 
pp. 248-251.

17.	K Niazmand, C Jehle, LT Dangelo, TC Lueth (2010) A new washable low-
cost garment for everyday fall detection. In 2010 Annual International 
Conference of the IEEE Engineering in Medicine and Biology, Buenos 
Aires pp. 6377-6380.

18.	SY Sim, HS Jeon, GS Chung, SK Kim, SJ Kwon, et al. (2011) Fall detection 
algorithm for the elderly using acceleration sensors on the shoes. In 
Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society, Boston, MA, pp. 4935-4938.

19.	R Narasimhan (2012) Skin-contact sensor for automatic fall detection. 
In Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society, San Diego, CA, pp. 4038-4041.

20.	C Park, J Suh, E Cha, H Bae (2011) Pedestrian navigation system with 
fall detection and energy expenditure calculation. In IEEE International 
Instrumentation and Measurement Technology Conference, Binjiang, p. 
1-4.

21.	Su YS, Twu SH (2020) A Real Time Fall Detection System Using Tri-
Axial Accelerometer and Clinometer Based on Smart Phones. In: Lin KP, 
Magjarevic R, de Carvalho P (Eds.)., Future Trends in Biomedical and 
Health Informatics and Cybersecurity in Medical Devices. ICBHI 2019, 
IFMBE Proceedings, Springer 74.

22.	M Tolkiehn, L Atallah, B Lo, G Yang (2011) Direction sensitive fall 
detection using a triaxial accelerometer and a barometric pressure 
sensor. In 2011 Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society, Boston, MA, pp. 369-372.

23.	Y He, Y Li, S Bao (2012) Fall detection by built-in tri-accelerometer 
of smartphone. In Proceedings of 2012 IEEE-EMBS International 
Conference on Biomedical and Health Informatics, Hong Kong, pp. 184-
187.

24.	J Lee, H Tseng (2019) Development of an enhanced threshold-based fall 
detection system using smartphones with built-in accelerometers. In 
IEEE Sensors Journal 19(18): 8293-8302.

25.	Y Bai, S Wu, C Tsai (2012) Design and implementation of a fall monitor 
system by using a 3-axis accelerometer in a smart phone. In IEEE 16th 
International Symposium on Consumer Electronics, Harrisburg, PA, p. 
1-6.

26.	NM Kosse, K Brands, JM Bauer, T Hortobagyi, CJ Lamoth (2013) Sensor 
technologies aiming at fall prevention in institutionalised old adults: a 
synthesis of current knowledge. Int J Med Inform 82(9): 743-752. 

27.	RG Cumming, C Sherrington, SR Lord, JM Simpson, C Vogler, et al. (2008) 
Cluster randomised trial of atargeted multifactorial intervention to 
prevent falls among older people in hospital. In BMJ 336: 758-760. 

28.	(2020) Bank my cell website. New York,USA. 

29.	H Hawley Hague, E Boulton, A Hall, K Pfeiffer, C Todd (2014) Older 
adults’ perceptions of technologies aimed at falls prevention, detection 
or monitoring: A systematic review. In Int J Med Inform 83(6): 416-426. 

30.	Kozina S, Gjoreski H, Gams M, Lustrek M (2013) Efficient activity 
recognition and fall detection using accelerometers. In Evaluating 
AAL Systems Through Competitive Benchmarking. EvAAL 2013, 
Communications in Computer and Information Science 386: 13-23.

31.	R Igual, C Medrano, I Plaza (2013) Challenges, issues and trends in fall 
detection systems. In BioMed Eng OnLine 12(66): 1-66.

32.	Radmanesh Elahe, Delrobaei Mehdi, Habachi Oussama, Chamani 
Somayyeh, Pousset Yannis, et al. (2020) A Wearable IoT-Based Fall 

http://dx.doi.org/10.26717/BJSTR.2021.34.005588
https://www.researchgate.net/publication/221312062_Smartphone-Based_Applications_for_Investigating_Falls_and_Mobility
https://www.researchgate.net/publication/221312062_Smartphone-Based_Applications_for_Investigating_Falls_and_Mobility
https://www.researchgate.net/publication/221312062_Smartphone-Based_Applications_for_Investigating_Falls_and_Mobility
https://www.researchgate.net/publication/221312062_Smartphone-Based_Applications_for_Investigating_Falls_and_Mobility
https://www.hindawi.com/journals/bmri/2020/2167160/
https://www.hindawi.com/journals/bmri/2020/2167160/
https://www.hindawi.com/journals/bmri/2020/2167160/
https://www.researchgate.net/publication/338858263_Classification_of_Daily_Life_Activities_for_Human_Fall_Detection_A_Systematic_Review_of_the_Techniques_and_Approaches
https://www.researchgate.net/publication/338858263_Classification_of_Daily_Life_Activities_for_Human_Fall_Detection_A_Systematic_Review_of_the_Techniques_and_Approaches
https://www.researchgate.net/publication/338858263_Classification_of_Daily_Life_Activities_for_Human_Fall_Detection_A_Systematic_Review_of_the_Techniques_and_Approaches
https://www.researchgate.net/publication/338858263_Classification_of_Daily_Life_Activities_for_Human_Fall_Detection_A_Systematic_Review_of_the_Techniques_and_Approaches
https://www.researchgate.net/publication/338858263_Classification_of_Daily_Life_Activities_for_Human_Fall_Detection_A_Systematic_Review_of_the_Techniques_and_Approaches
https://ieeexplore.ieee.org/document/9018226?denied=
https://ieeexplore.ieee.org/document/9018226?denied=
https://ieeexplore.ieee.org/document/9018226?denied=
https://ieeexplore.ieee.org/document/8736227?denied=
https://ieeexplore.ieee.org/document/8736227?denied=
https://ieeexplore.ieee.org/document/5223652
https://ieeexplore.ieee.org/document/5223652
https://ieeexplore.ieee.org/document/5223652
https://ieeexplore.ieee.org/document/5223652
https://pubmed.ncbi.nlm.nih.gov/19163747/
https://pubmed.ncbi.nlm.nih.gov/19163747/
https://pubmed.ncbi.nlm.nih.gov/19163747/
https://pubmed.ncbi.nlm.nih.gov/19163747/
https://ieeexplore.ieee.org/document/6144718
https://ieeexplore.ieee.org/document/6144718
https://ieeexplore.ieee.org/document/6144718
https://ieeexplore.ieee.org/document/6240378
https://ieeexplore.ieee.org/document/6240378
https://ieeexplore.ieee.org/document/6240378
https://ieeexplore.ieee.org/document/6240378
https://ieeexplore.ieee.org/document/6240378
https://www.researchgate.net/publication/224330771_A_real-time_multiview_fall_detection_system_A_LHMM-based_approach
https://www.researchgate.net/publication/224330771_A_real-time_multiview_fall_detection_system_A_LHMM-based_approach
https://www.researchgate.net/publication/224330771_A_real-time_multiview_fall_detection_system_A_LHMM-based_approach
https://ieeexplore.ieee.org/document/6258554
https://ieeexplore.ieee.org/document/6258554
https://ieeexplore.ieee.org/document/6258554
https://ieeexplore.ieee.org/document/6258554
https://ieeexplore.ieee.org/document/6279483
https://ieeexplore.ieee.org/document/6279483
https://ieeexplore.ieee.org/document/6279483
https://ieeexplore.ieee.org/document/6279483
https://pubmed.ncbi.nlm.nih.gov/23365879/
https://pubmed.ncbi.nlm.nih.gov/23365879/
https://pubmed.ncbi.nlm.nih.gov/23365879/
https://pubmed.ncbi.nlm.nih.gov/23365879/
https://pubmed.ncbi.nlm.nih.gov/23365877/
https://pubmed.ncbi.nlm.nih.gov/23365877/
https://pubmed.ncbi.nlm.nih.gov/23365877/
https://pubmed.ncbi.nlm.nih.gov/23365877/
https://pubmed.ncbi.nlm.nih.gov/23365877/
https://pubmed.ncbi.nlm.nih.gov/21096697/
https://pubmed.ncbi.nlm.nih.gov/21096697/
https://pubmed.ncbi.nlm.nih.gov/21096697/
https://pubmed.ncbi.nlm.nih.gov/21096697/
https://ieeexplore.ieee.org/document/6091223
https://ieeexplore.ieee.org/document/6091223
https://ieeexplore.ieee.org/document/6091223
https://ieeexplore.ieee.org/document/6091223
https://ieeexplore.ieee.org/document/6346853
https://ieeexplore.ieee.org/document/6346853
https://ieeexplore.ieee.org/document/6346853
https://ieeexplore.ieee.org/document/5944065
https://ieeexplore.ieee.org/document/5944065
https://ieeexplore.ieee.org/document/5944065
https://ieeexplore.ieee.org/document/5944065
https://pubmed.ncbi.nlm.nih.gov/22254325/
https://pubmed.ncbi.nlm.nih.gov/22254325/
https://pubmed.ncbi.nlm.nih.gov/22254325/
https://pubmed.ncbi.nlm.nih.gov/22254325/
https://ieeexplore.ieee.org/document/6211540
https://ieeexplore.ieee.org/document/6211540
https://ieeexplore.ieee.org/document/6211540
https://ieeexplore.ieee.org/document/6211540
https://ieeexplore.ieee.org/document/8721091
https://ieeexplore.ieee.org/document/8721091
https://ieeexplore.ieee.org/document/8721091
https://ieeexplore.ieee.org/document/6241717
https://ieeexplore.ieee.org/document/6241717
https://ieeexplore.ieee.org/document/6241717
https://ieeexplore.ieee.org/document/6241717
https://pubmed.ncbi.nlm.nih.gov/23845790/
https://pubmed.ncbi.nlm.nih.gov/23845790/
https://pubmed.ncbi.nlm.nih.gov/23845790/
https://pubmed.ncbi.nlm.nih.gov/18332052/
https://pubmed.ncbi.nlm.nih.gov/18332052/
https://pubmed.ncbi.nlm.nih.gov/18332052/
file:///F:/Journals/BJSTR.MS.ID.005588/BJSTR-CAR-21-RA-190_W/1.%09https:/www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://pubmed.ncbi.nlm.nih.gov/24798946/
https://pubmed.ncbi.nlm.nih.gov/24798946/
https://pubmed.ncbi.nlm.nih.gov/24798946/
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-12-66
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-12-66


Copyright@ Chiara Bicchielli | Biomed J Sci & Tech Res | BJSTR. MS.ID.005588.

Volume 34- Issue 4 DOI: 10.26717/BJSTR.2021.34.005588

26992

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

•	 Global archiving of articles

•	 Immediate, unrestricted online access

•	 Rigorous Peer Review Process

•	 Authors Retain Copyrights

•	 Unique DOI for all articles

https://biomedres.us/

This work is licensed under Creative
Commons Attribution 4.0 License

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2021.34.005588

Chiara Bicchielli. Biomed J Sci & Tech Res

Detection System Using Triaxial Accelerometer and Barometric Pressure 
Sensor 158-170.

33.	Kumar VS, Acharya KG, Sandeep B, Jayavignesh T, Chaturvedi A (2019) 
Wearable Sensor-Based Human Fall Detection Wireless System. In: 
Zungeru A, Subashini S, Vetrivelan P (Eds.)., Wireless Communication 
Networks and Internet of Things. Lecture Notes in Electrical Engineering 
Springer, Singapore, pp. 493. 

34.	Islam M, Neom N, Imtiaz M, Nooruddin S, Islam M, et al. (2019) A review 
on fall detection systems using data from smartphone sensors. In 
Ingénierie des systèmes d information 24: 569-576.

35.	Dharmitha Ajerla, Sazia Mahfuz, Farhana Zulkernine (2019) A Real-
Time Patient Monitoring Framework for Fall Detection. Wireless 
Communications and Mobile Computing 2019.

36.	J Klenk, C Becker, F Lieken, S Nicolai, W Maetzler, et al. (2011) Comparison 
of acceleration signals of simulated and real-world backward falls. In 
Med Eng Phys 33(3): 368-373.

37.	F Ferri, DM Pisanelli, FL Ricci (1996) An object-oriented model for a 
multimedia patient folder . In ACM SIGBIO Newsletter 16: 2-18.

38.	F Ferri (1995) The medical folder as an active tool in defining the clinical 
decision-making process. In Medical Informatics 20(2): 97-112.

39.	A DUlizia, F Ferri, P Grifoni, T Guzzo (2010) Smart homes to support 
elderly people: Innovative technologies and social impacts. In Pervasive 
and Smart Technologies for Healthcare: Ubiquitous Methodologies and 
Tools, IGI Global p. 25-38.

40.	SR Lord, JA Ward, P Williams, KJ Anstey (1993) An epidemiological study 
of falls in older community-dwelling women: The Randwick falls and 
fractures study. In Australian Journal of Public Health 17(3): 240-245.

http://dx.doi.org/10.26717/BJSTR.2021.34.005588
https://biomedres.us/submit-manuscript.php
https://biomedres.us/
http://dx.doi.org/10.26717/BJSTR.2021.34.005588
http://www.iieta.org/journals/isi/paper/10.18280/isi.240602
http://www.iieta.org/journals/isi/paper/10.18280/isi.240602
http://www.iieta.org/journals/isi/paper/10.18280/isi.240602
https://www.hindawi.com/journals/wcmc/2019/9507938/
https://www.hindawi.com/journals/wcmc/2019/9507938/
https://www.hindawi.com/journals/wcmc/2019/9507938/
https://pubmed.ncbi.nlm.nih.gov/21123104/
https://pubmed.ncbi.nlm.nih.gov/21123104/
https://pubmed.ncbi.nlm.nih.gov/21123104/
https://dl.acm.org/doi/10.1145/231694.231696
https://dl.acm.org/doi/10.1145/231694.231696
https://pubmed.ncbi.nlm.nih.gov/8569310/
https://pubmed.ncbi.nlm.nih.gov/8569310/
https://www.igi-global.com/chapter/smart-homes-support-elderly-people/42373
https://www.igi-global.com/chapter/smart-homes-support-elderly-people/42373
https://www.igi-global.com/chapter/smart-homes-support-elderly-people/42373
https://www.igi-global.com/chapter/smart-homes-support-elderly-people/42373
https://pubmed.ncbi.nlm.nih.gov/8286498/
https://pubmed.ncbi.nlm.nih.gov/8286498/
https://pubmed.ncbi.nlm.nih.gov/8286498/

	ABSTRACT
	_Hlk67161056
	_Hlk67161072
	_Hlk67161081
	_Hlk67161131
	_Hlk67161155
	_Hlk67161146

