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Mini Review
Artificial Intelligence (AI) has the promising ability to improve 

healthcare delivery [1]. AI machine learning algorithms and data 
mining can offer many advantages; however, these advantages are 
always associated with many challenges and practical implications. 
One of these challenges is missing and inconsistent data; other 
challenges can be the disconnect between biomedical informatics 
and bedside providers [2-4]. For the AI-driven tool to outperform 
humans in specific analytical tasks, the tool explain ability should 
be understood clearly by the multidisciplinary team involved in 
creating and implementing such a tool. Explain ability has to be 
cleared in terms of how the tool will be achieved and what is the 
benefits of adopting it [5,6]. Clinical decision support systems 
(DSS) are being used increasingly in healthcare for providing 
guidance on safe medication prescribing, guidelines adherence, and 
risk assessment and prognosis [7]. These systems utilize guidelines 
that were formed based on data mining and articulation. The DSS 
could outperform the human ability only if it is used for what it is 
intended for [8].

Failed Extubation in Pediatric Patients 

Infants and children born with congenital heart defects require 
surgical repair at some point in their lives. These patients stay in 
the hospital for a substantial period, depending on their surgery’s 
complexity and the perioperative care they receive. Mechanical 
ventilation is required for these patients around the surgery time. 
Longer mechanical ventilation has been associated with more 
extended hospital stays and worse outcomes [9-11]. Patient needs 
to meet specific clinical and ventilatory criteria before separation 
from the ventilator. However, these criteria are not always clear, and 
patients also may fail the extubation despite meeting these criteria 
[12]. Failed extubation is associated with the bad outcome too. 

Current Practice 

Many heart centers currently depend on extubation readiness 
trials (ERT) for the prediction of extubation success in pediatric 
patients following heart surgery [13,14]. The extubation readiness 
trails are composed of a specific period when the patients are placed 
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on spontaneous ventilatory mode, providing them with minimal 
support. ERT is considered successful if the patient maintains good 
ventilation and oxygenation through the trail. 

Etiometry 

Etiometry is a new platform currently used by many physicians 
to track patients’ vitals and critical clinical data over their 
hospitalization. When it is available at the bedside, it can give the 
bedside nurses a very good idea about the general trend of patients’ 
vital signs. Etiometry data was extracted recently, and a score was 
developed to predict cardiac arrest for patients following cardiac 
surgery [15,16].

The Proposed New Method to Predicts Successful 
Extubation 

We propose utilizing the Etiometry data combined with the ERT 
outcome to delineate and predict which patient will be successfully 
extubated. However, to develop a score that can predict the successful 
extubation, we need a retrospective review of our patients’ clinical 
data and their mechanical ventilation course. Based on this review, 
we can establish a scoring method that considers the critical data 
point that Etiometry collects. Following the review phase, we can 
validate our scoring system prospectively for a certain number of 
patients. This step is necessary and helpful for us as we may add 
or subtract some data points that we find essential. Our vision that 
the Etiometry will provide a score for each ERT that is done, the 
specific threshold will be adopted for successful extubation. We will 
call such score the Adequate Breathing (AB) score.
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