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Mini Review
Due to both fundamental aspects of their magnetization and 

growing industry [2] interest, especially in data storage [3], fine 
single domain ferromagnetic nanoparticles have been a hot topic 
of research for more than 60 years. Medical applications, such as 
hyperthermia [4], are also significant in the present. The instability 
of magnetization [5] M(t). is a function of such nanomaterials, 
like superparamegnetic nanoparticles, the phenomenon of 
superparamagnetism [5] is caused by thermal agitation resulting 
in spontaneous change of orientation from one metastable state 
to another by surmounting Zeeman energy barriers [6].  Because 
single-domain nanoparticles have a large magnetic dipole moment, 
the Zeeman energy is relatively high even in weak external 
magnetic fields, the field dependence of the magnetization 
reversal process causes nonlinear effects in dynamic susceptibility, 
stochastic resonance, dynamic Magnetic Hysteresis (MHP), and  

 
other phenomena. The calculation of the nonlinear response of 
the magnetization in the presence of the thermal is required to 
determine the nonlinear magnetic susceptibility and MHP for 
arbitrary ac field strengths.  This calculation is typically handled by 
the Langevin equation, which is Gilbert’s [7] (or Landau- Lifshitz’s 
[7]) equation augmented by a random field h(t) with Gaussian 
white noise properties, accounting for thermal fluctuations in an 
individual particle’s magnetization.
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where γ  is the gyromagnetic ratio, α  is the dimensionless 
damping parameter, MS is the saturation magnetization and V is the 
free energy per unit volume consisting of the magnetic anisotropy 
Hamiltonian and Zeeman energy densities. The saturation 
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magnetization is assumed to be constant in this case, so the only 
variable is the orientation of M. The azimuthal and polar angles of 
the spherical polar coordinate system give the orientation of M(t). 
This equation is then used to derive the associated Fokker-Planck 
[6] equation (FPE) governing the time evolution of the probability 
density function of magnetization orientations on a sphere of 
radius (u is a unit vector along M), and the relevant FPE is given [1].

( ) ( )2 . .N
W u V W W W V
t
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along M of radius MS like: is gradient operator on the unit 
sphere along M of radius MS

where / u∇ = ∂ ∂   is the gradient operator on the unit sphere,

sMα γη=  is the damping,   ( )1
0Nτ τ α α −= +  is the typical free 

diffusion time of M(t), and  ( )0 / 2sMτ β γ= ,  ( )/vβ = ΚΤ , v is 
the volume of the particle, k is Boltzmann’s constant, and T is the 
temperature.  Various treatments of the nonlinear ac stationary 
response have been carried out by employing numerical solutions 
to the governing dynamical equations (1) and/or (2). In particular, 
efficient numerical algorithms for calculating the nonlinear ac 
stationary response of uniaxial systems are being developed 
superparamagnetic nanoparticles have been proposed (see, for 
example,) by assuming that the ac driving field is directed along 
the particle’s easy axis.  However, because there is no dynamical 
coupling between the longitudinal and transverse modes of motion 
in this axially symmetric configuration, many interesting nonlinear 
effects cannot be treated or understood. These results have recently 
been generalized to determine the nonlinear ac stationary response 
for a uniaxial particle driven by a strong ac field applied at an angle 
to the particle’s easy axis, so that the axial symmetry is broken by 
the Zeeman energy. Only the axially symmetric uniaxial anisotropy 
potential has been treated in the preceding papers, greatly 
simplifying the analysis. The results, however, cannot be applied to 
particles that have inherent nonaxially symmetric anisotropy, such 
as biaxial (orthorhombic) anisotropy [8].

( ) 2 2 2, sin sin cosbiaxVβ ϑ ϕ σ ϑ ϑ ϕ= + ∆ .	                                   (3)

0∆ =  in the parenthesis like. 0∆ =  corresponds to uniaxial 
anisotropy),ϑ andϕ are polar and the azimuthal angles of the 
spherical coordinate system. We treat this problem because biaxial 
anisotropy may yield an appreciable contribution to the free energy 
density of magnetic nanoparticles [9]. In particular, where, ∆  and 
σ are the biaxiality and barrier parameters (corresponding to 
uniaxial anisotropy), respectively, and are the polar and azimuthal 
angles of the spherical coordinate system. We address this issue 
because biaxial anisotropy can contribute significantly to the free 
energy density of magnetic nanoparticles. specifically. Titov, et al. 
[10]. presented a method for solving the general nonlinear problem 
[i.e., nonlinear ac stationary response for superparamagnets 

with arbitrary anisotropy and including the gyromagnetic term 
in the FPE (2)]. Using this method, we calculate the nonlinear 
magnetic susceptibilities and MHP of nanoparticles with biaxial 
anisotropy when subjected to a strong alternating current field. 
We will show that for arbitrary ac and dc bias field orientations, 
the magnetization dynamics change significantly, resulting in new 
temperature and damping dependent nonlinear effects at low, mid, 
and high frequencies.

Mathematical Model 
In superimposed homogeneous external magnetic dc and 

ac fields of arbitrary strengths and orientations, the free-energy 
density V of a single-domain ferromagnetic nanoparticle with 
biaxial anisotropy is given by [11]
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where  0 0 sH Mξ β= ,  sHMξ β= , MS is the saturation 
magnetization,  

1 2 3sin cos , sin sin , cosγ ψ φ γ ψ φ γ ψ= =

and  '
1γ , '

2γ , '
3γ are the vectors H0 and H direction cosines, 

respectively.

As demonstrated in Ref. 9, the solution of the Gilbert-Langevin 
equation (1) for any anisotropy potential can be reduced to an 
infinite hierarchy of differential-recurrence equations for the 

statistical moments governing magnetization dynamics.   ( ),lmY ϑ ϕ
is a spherical harmonic of order l and rank m defined as [9]
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where   ( )m
lP x  denotes the Legendre functions.

We obtain the ac stationary solution for magnetization ( )HM t  
in the direction of the ac driving field H by using generalized 
differential-recurrence equations specialized to biaxial 
nanoparticles, viz. [9],
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the ( ),
k
l mc ω  are the coefficients in the time Fourier series of the 

averaged spherical harmonics, viz.,
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k ik t
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Using matrix continued fractions, the coefficients ( ),
k
l mc ω , and 

thus the magnetization, ( )HM t can be calculated. We will consider 
the parameter range 1σ >>  and 1ξ ≥  corresponding to the low 
temperature limit and strongly nonlinear regime when calculating 
the nonlinear ac response. Assume that the vectors H0 and H are 

parallel and that they lie in the XZ ( )0φ = or YZ ( )/ 2φ π=  planes 
of the laboratory coordinate system, so that the direction cosines 

are 1 sinγ ψ=  or  2 0γ = , 3 cosγ ψ= or 1 0γ = , 3 cosγ ψ= , whereψ

is the polar angle between H and the Z axis taken as the particle’s 
easy axis. The MHP loop now represents a parametric plot of the 
steady-state time-dependent magnetization as a function of the 

AC field, i.e. ( )HM t   vs. ( ) cosH t H tω= ,  where the time interval 
t coincides with the field’s period of oscillation for a given value of. 
The normalized area of the MHP loop nA  (which is the energy loss 
per particle and per cycle of the AC field) is defined as [12].

( ) ( ) 1
1

1
4 4n H

s

A M t dH t lm m
M H

π − 
= = −  

 ∫ .	                                  (8)

Results and Discussion
MHL loops for various ac field amplitude, damping, and 

dimensionless barrier parameter 1/ Tσ ∝  values are shown in 

Figure 1. The size of the cycles changes as the biaxial parameter 
changes, as shown in Figure 1. Furthermore, the coercivity, 
remanent magnetization, and saturation magnetization are all 
strongly dependent on the barrier height, resulting in significant 
variation in the size and shape of loops for different values of σ
at low frequencies. As a result, the magnetic response remains 
strongly temperature dependent. All of the hysteresis loops for 

0 1ωτ = , 110α −= , 0 0ξ = , and 5σ ≥ are large, retaining a large 
fraction of the saturation field when the driving field is removed. For

2σ ≥ , we have narrow hysteresis loops, implying that reversing 
the magnetization repeatedly consumes a small amount of energy. 
In contrast to uniaxial particles, the MHL is clearly shown in Figure 
1 to be strongly dependent on azimuthal direction. Figure 2 shows 
that the MH loops and normalized loop area are strongly dependent 
on the biaxial parameter, the oblique angle, the damping, and the 
dimensionless frequency, indicating that thermal fluctuations are 
primarily responsible for magnetization relaxation. The dynamic 
hysteresis at high frequencies, such as 0 1ωτ =  Figure 2, is caused 
by resonant absorption in the FMR band. Thus, the MHL resulting 
from a high-frequency periodic signal can be evaluated, allowing 
for quantitative analysis of ultrafast magnetization switching.

Figure 1: MHL loops at 0 1ωτ = , barrier parameter 15σ = , for various damping 0.2, 0.4, 0.6,1α = , and ac field parameter h = 
0.2, 0.6, 0.8, 1
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Figure 2: MHL An as function of the parameter of the alternative field h for different value of the angle / 3, / 4, / 6ψ π π π= , at low 
frequency  0 0.001ωτ =

Conclusion
Brown’s model has been used to provide a rigorous treatment 

of the dynamic hysteresis loops of a single domain particle with 
biaxial anisotropy. All calculations were performed with the system 
initially assumed to have biaxial anisotropy, and no approximations 
were used other than those already inherent in Brown’s model. 
The current calculation, which involves both alternating and 
direct current fields applied at arbitrary angles to the easiest axis 
of magnetization (taken as the polar axis) in a bistable system, is 
the first attempt to treat an anisotropy that is not uniaxial in this 
manner. Titov et al. provided detailed treatments of the same 
problem restricted to uniaxial anisotropy for both an ac field and 
a dc field of arbitrary strength applied at angles to the easy axis of 
magnetization. 
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