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ABSTRACT

Producing medical-grade Oxygen to improve the availability of oxygen therapy and other treatments, 
especially in developing countries, remote areas strained during the COVID-19 pandemic, and beyond. 
It argues on the technical challenges, ethical concerns, and other issues of medical oxygen production 
with Medical Oxygen Concentrators (MOC) for specialized treatments. The article looks into how to 
integrate proper usage of either ML or DL considering the optimization models, data collection, technical 
considerations, and bias. It explains how pressure-swing adsorption (PSA) based MOC can be a source of 
medical-quality Oxygen that can serve different healthcare system levels. It also highlights the advantages 
and disadvantages of locally generated PSA oxygen, such as its independence from commercial gas 
producers, ease of use, potential malfunctioning of the sieve, and excess water vapors. While describing 
how PSA oxygen works by concentrating Oxygen from the ambient air, it highlights the difference in 
applying Deep Learning or Machine Learning for AI-assist optimization and operation of MOC. The authors 
address several promising research avenues for novel medical oxygen treatments and production with AI-
assisted capabilities, including non-bias data sources, unconventional problem formulations, and human–
AI collaboration. Finally, we consider meaningful technical and ethical challenges in issues spanning from 
data scarcity to racial bias. It concludes that optimizing PSA oxygen devices is essential for improving 
oxygen therapy and saving lives, notably in Low-Resource Settings.
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Introduction
The importance of the Medical Oxygen Concentrator (MOC) will 

increase in the coming years. The need and challenges of producing 
medical-grade Oxygen are crucial, especially in developing countries, 
remote areas, or during the COVID-19 pandemic. Based on our re-
search and the ongoing work in many regions around the world, Ar-
tificial Intelligence (AI), Deep Learning, and Machine Learning (ML) 
can help address some of the challenges faced by healthcare systems 
or even revolutionize healthcare. AI can improve the practinionesrs 
day-to-day work. Letting healthcare staff spend more time caring for 
patients, ML and DL can allow for better care outcomes and improve 
the productivity of care delivery, and, in so doing, raise staff morale, 
and improve efficiency and retention [1-3]. Pressure-swing adsorp-
tion (PSA) Oxygen generating plants can be a source of medical-qual-

ity Oxygen that can serve different healthcare system levels. PSA oxy-
gen works by concentrating Oxygen from the ambient air by removing 
nitrogen through a molecular sieve, such as ion transport membranes 
or zeolite. But it’s a complex thermodynamic mechanism that is sub-
stantially influenced by the context and operating conditions. That is 
where AI can help. 

The advantages of PSA oxygen include its independence from 
industrial or commercial gas producers, ease of use, potential mal-
functioning of the sieve, and excess water vapors. MOC based on the 
PSA process can generate medical-quality Oxygen has an oxygen con-
centration between 90% and 96%, and most PSA oxygen devices can 
produce 90 to 93% oxygen at a rate of less than 10 liters per minute. 
The use and optimization of portable medical oxygen concentrators 
(MOCs) based on pressure-swing adsorption (PSA) to generate and 
deliver medical-grade Oxygen in low-resource settings (LRS) is even 
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more critical [3,4]. Many authors have reviewed the evidence of the 
effectiveness, reliability, and low cost of MOCs compared to other 
oxygen sources, as well as the challenges of maintenance and power 
supply. It also considers the factors that affect the performance and 
design of MOCs, such as maximum flow output, oxygen concentration 
output at higher altitudes, and humidification. It concludes that MOCs 
are versatile and beneficial devices for oxygen therapy, especially for 
patients with serious lung diseases or COVID-19. The current article 
will discuss the possible extensions and applications of flexible PSA 
processes for MOCs using Machine Learning and, more generally, Ar-
tificial Intelligence. It suggests that a microcontroller can be used to 
monitor the oxygen level in patients’ blood and adjust the operation 
of the MOC to meet their Oxygen needs in real-time. It also mentions 
that artificial intelligence can be used to simulate and optimize the 
complex PSA process and its outcomes. It also points out the potential 
for improving the exergy efficiency of the process by reducing the ex-
ergy losses at different stages.

AI in Healthcare
The healthcare provider struggles to keep up with the most re-

cent advancements in his area and lacks appropriate time to dedicate 
to each patient due to our rising expectations for the best quality 
healthcare and the rapid rise of more precise medical knowledge. Due 
to time constraints, most medical choices must be made quickly, us-
ing the doctor’s unaided judgment [5-7]. Both Machine learning and 
Deep learning are types of AI. While ML is AI that can automatically 
adapt with minimal human interference, DL is a subcategory of ML 
that uses artificial neural networks to mimic the human brain’s learn-
ing process. ML and DL tools can assist in retrieving, organizing, and 
restoring medical knowledge required by a doctor’s ability to make 
decisions and giving a better, quicker, and more accurate prognosis. 
The Mayo Clinic, Massachusetts General Hospital, Memorial Sloan 
Kettering Cancer Center, and National Health Service have developed 
AI algorithms for their diagnosis process, monitoring, therapy, and 
patient care [8,9]. Although artificial intelligence is still in its infancy, 
it cannot yet equal a doctor’s level of intelligence and most definitely 
cannot replace a doctor who is physically there. Electronic medical 
records may be fully utilized with the help of AI, going from electronic 
filing cabinets to full-fledged doctors’ assistants that can give clini-
cally pertinent, high-quality data in real time. How could this benefit 
doctors? Doctors can cross-reference the data with the most recent 
clinical studies using Watson, IBM’s artificially intelligent supercom-
puter. AI has come a long way, it still can’t fully function on its own 
or think as a person would, but artificial intelligence has much to 
offer medical professionals and facilities worldwide. To name a few, 
AI incorporates virtual presence, decreases cost, eliminates human 
mistakes, and offers quick and precise diagnoses. Many infections 
spread quickly, necessitating prompt treatment to prevent them from 
worsening. Systems equipped with artificial intelligence can retrieve 
the knowledge that has been stored anywhere in the globe and learn 

from prior cases. Artificial intelligence, which is rapidly expanding in 
many areas directly related to health, is used in so many applications 
[10-12].

PSA-Based Oxygen Production
In the Pressure swing adsorption (PSA), ambient air passes 

through an internal filtration system (e.g., a molecular sieve [zeolite 
granules or membranes]), which has a large enough total surface area 
to separate nitrogen (N2) from the air, concentrating the remaining 
Oxygen (O2) to a known purity. It typically consists of an air compres-
sor, dryer, filters, dual separation chambers, a reservoir, and controls 
[13,14]. PSA is an economical and reliable method to separate mixed 
gas into individual gases while achieving a high purity level. PSA is 
a non-cryogenic air separation process which essentially means it is 
a process that uses near ambient temperatures for the production 
of Oxygen in contrast to the cryogenic distillation techniques of gas 
separation, which take place are very low temperatures and is a pro-
cess commonly employed in chemical and petrochemical processes in 
commercial practices [15-17].

Medical Oxygen with AI-Assistance
There is not much development in the context of AI-assisted Med-

ical Oxygen. But for a few articles, such as Ref. [18], it isn’t easy to find 
much essential medicine from the WHO guidelines [19,20]. But the 
potential for support is high, especially in regions where this resource 
MO is limited or has an intermittent supply chain (such as in many 
developing countries). We already have some examples of AI-assist-
ed oxygen treatments. Notably, AI Compass: A device that uses AI to 
monitor and adjust the oxygen flow for patients with COPD (chronic 
obstructive pulmonary disease) based on their activity level, blood 
oxygen saturation, and heart rate. OxyGEN: A device that uses AI to 
convert manual ventilators into automatic ones, by controlling the ox-
ygen flow and pressure for patients with respiratory failure, especial-
ly those with COVID-19, or Oxynov: A device that uses AI to provide 
adaptive oxygen therapy for patients with hypoxemia, by adjusting 
the oxygen flow according to the patient’s breathing pattern and ox-
ygen saturation. But we might go even further than assisting treat-
ments. It can also provide the optimum quality of Oxygen produced 
locally, independent from supply chain struggle and for a lower cost 
[21]. Properly implemented Machine Learning or Deep Learning can 
improve medical oxygen production with PSA-based MOC. The out-
comes of such integration can allow for further improvement of Medi-
cal Oxygen Treatments and Production with MOC in several ways pre-
sented in (Table 1). Further along, the patient’s journey with oxygen 
therapy or other O2-based treatments, having access to patient infor-
mation and being able to adjust Oxygen Quality from any location is 
now more critical than ever (Table 2). Distributed ways of working 
have quickly become the norm in the wake of COVID-19, with remote 
reading and even diagnosis creating opportunities to balance work-
load and leverage specialists across enterprise networks [22-24]. 
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Table 1: AI-Assisted Improvement of Medical Oxygen Treatments and Production with MOC.

AI (ML or DL) can assist to:

Monitoring oxygen levels: Measure and track patients’ oxygen saturation, especially those with chronic respiratory conditions or COVID-19, 
using wearable devices or smartphone apps.

Optimizing oxygen delivery: Adjust the flow and concentration of Oxygen delivered to patients using smart oxygen concentrators or ventilators 
based on their individual needs and treatment preferences.

Reducing oxygen waste: Detect and prevent leaks, overflows, or misuse of oxygen supplies using sensors and algorithms that monitor the 
pressure, temperature, and flow of Oxygen in cylinders or pipelines.

Reducing resources usage:
Optimizing the MOC process and treatment would allow for better quality with small resource usage and improve 
energy efficiency; this would greatly help to stabilize Medical Oxygen Supply in developing countries during pow-

er outage periods and other LRS.

Improving oxygen access:
Forecast the demand and supply of Oxygen in different regions or facilities using data from health records, epide-
miological models, and logistics systems, and provide recommendations for optimal allocation and distribution of 

oxygen resources.

Table 2: AI applications in healthcare.

Applications in Healthcare AI is already used, or in deployment, to:

1 Imaging analysis Identify abnormalities, reduce radiation dose, and improve image quality in CT, MR, and ultrasound modal-
ities.

2 AI-assisted robotic surgery Guide surgical robots and provide real-time feedback to surgeons, resulting in more precise and less invasive 
procedures.

3 Preliminary diagnosis Analyze symptoms, medical history, and test results, and provide a possible diagnosis or a list of differential 
diagnoses for patients.

4 Virtual nursing assistants Monitor patients’ conditions, answer their queries, remind them of their medications, and alert medical staff 
if needed.

5 Connected medical devices Collect and analyze data from wearable devices like smartwatches that track vital signs, activity levels, and 
other health indicators.

6 Prescription error recognition Detect and prevent errors in prescribing or dispensing medications, such as drug interactions, allergies, or 
dosage mistakes.

7 Drug discovery Accelerate the process of finding new drugs or repurposing existing ones by screening large databases of 
chemical compounds and predicting their effects and interactions.

8 Forecasting kidney disease Predict the risk of developing chronic kidney failure or kidney disease based on factors (e.g., blood pressure, 
glucose levels, and demographics).

9 Researching and treating cancer Analyze genomic data, identify mutations, classify tumors, recommend personalized treatments, and moni-
tor responses for cancer patients.

As shown in (Figure 1), while distributed working methods take 
hold, central coordination is critical. This might mean that we will 
see a substantial rise of clinical and operational command centers – 
either virtual or physical – that allow for the dynamic orchestration 
of people, data, treatment, and, notably, medical Oxygen across the 
healthcare setting. These command centers will be instrumental in 
managing complexity and unpredictability, and better managing Med-
ical O2 will be essential in an already overburdened system. In cardiac 
care, cloud-based AI already helps quickly detect atrial fibrillation or 
heart rhythm disturbances based on an analysis of remote electrocar-
diogram (ECG) recordings. Atrial fibrillation affects millions each year. 
However, the condition is often unrecognized and untreated (Figure 
2). By flagging readings that may require the most urgent attention, 
clinicians are empowered to deliver cardiac care faster and more effi-
ciently. [25] The same approach could be used with Oxygen Therapy. 
But research still needs to continue to allow for proper and ethical 

integration of machine learning in healthcare, especially in the med-
ical oxygen supply. Further along, the patient’s journey with oxygen 
therapy or other O2-based treatments, having access to patient infor-
mation and being able to adjust Oxygen Quality from any location is 
now more critical than ever. Distributed ways of working have quick-
ly become the norm in the wake of COVID-19, with remote reading 
and even diagnosis creating opportunities to balance workload and 
leverage specialists across enterprise networks [22-24]. As shown in 
(Figure 1), while distributed working methods take hold, central co-
ordination is critical. This might mean that we will see a substantial 
rise of clinical and operational command centers – either virtual or 
physical – that allow for the dynamic orchestration of people, data, 
treatment, and, notably, medical Oxygen across the healthcare setting 
(Figure 3). These command centers will be instrumental in managing 
complexity and unpredictability, and better managing Medical O2 will 
be essential in an already overburdened system.
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Figure 1: Process diagram of the PSA Medical Oxygen Production.

Figure 2: Deep learning vs. machine learning.
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Figure 3: Framework for using AI-assisted process for Medical Oxygen Treatment with MOC.

Figure 4: Overview of the progress, challenges, and opportunities for AI in health. CMS, Centers for Medicare & Medicaid Services.
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In cardiac care, cloud-based AI already helps quickly detect atri-
al fibrillation or heart rhythm disturbances based on an analysis of 
remote electrocardiogram (ECG) recordings. Atrial fibrillation affects 
millions each year. However, the condition is often unrecognized and 
untreated. By flagging readings that may require the most urgent at-
tention, clinicians are empowered to deliver cardiac care faster and 
more efficiently [25]. The same approach could be used with Oxygen 
Therapy (Figure 4). But research still needs to continue to allow for 
proper and ethical integration of machine learning in healthcare, es-
pecially in the medical oxygen supply. Minimizing equipment down-
time through predictive maintenance is also an advantage of AI-pow-
ered units. Next to augmenting the skills of physicians and staff, AI 
can also help improve continuity of care by predicting when medi-
cal equipment requires maintenance. For example, through contin-
uous sensing (with remote supervision of staff), a unit can monitor 
and analyze over 500 parameters on a MOC, allowing it to identify 
proactively when certain hardware parts may need maintenance or 
replacement. For MR machines, results have illustrated preventing 
avoidable interruptions (up to 30% of service cases can be resolved 
before downtime is caused) to clinical practice and unnecessary pa-
tient delays [25]. In the future, having a full digital twin, or virtual 
representation of an entire imaging fleet, could allow for even more 
comprehensive predictive maintenance and continuous operational 
optimization. In a nutshell, the AI-assisted framework asks for better 
human–AI collaboration.

In some cases, AI-assisted oxygen treatments can be more effec-
tive than traditional methods, depending on the type and severity of 
the condition, the availability and quality of Oxygen, and the patient’s 
preferences and compliance. Some possible benefits of AI-assisted ox-
ygen treatments and products have been identified:

A. Reducing mortality rate: A study using a reinforcement 
learning algorithm to manage oxygen flow rate for COVID-19 
patients under intensive care [26,27] showed that the algorithm 
could potentially lower the mortality rate by 2.57% compared to 
the standard of care.
B. Enhancing photodynamic therapy: Photodynamic therapy 
(PDT) is a technique that uses light and photosensitizers to gener-
ate ROS and kill tumor cells, but it requires Oxygen to work. Some 
studies have shown that using AI to regulate oxygen delivery 
or supply can improve the efficacy and safety of PDT for cancer 
treatment.
C. Improving patient comfort: AI can help to provide person-
alized and adaptive oxygen therapy for patients with different 
conditions, such as COPD, hypoxemia, or respiratory failure, by 
adjusting the oxygen flow according to their activity level, blood 
oxygen saturation, heart rate, or breathing pattern. This can re-
duce the risk of oxygen toxicity, hypercapnia, or hypoxemia and 
improve patient comfort and quality of life.

D. Improving oxygen availability or usage: In a case of 
stretched resources (Oxygen, energy, staff), a healthcare facility 
is sometimes or more often (see [22-29]) unable to appropriately 
respond to the demand for medical Oxygen. AI can help minimize 
usage for the same or even better level of treatment quality. 

Discussion 
While Deep Learning appears to be less adapted to MOC optimiza-

tion because it requires a much more significant amount of data than 
ML, Machine Learning can be used faster to improve oxygen delivery 
systems. But Deep Learning appears to be the natural next step into 
optimization, such as advanced thermodynamic models [2,13,22,28] 
since DL is an advanced ML technique that layers algorithms and 
neurons (the computing units) into an artificial neural network. Nev-
ertheless, DL learns independently from the environment and past 
mistakes using a specialized GPU (graphics processing unit) to train. 
On the other hand, ML requires more human intervention to correct 
and learn but can be trained on a more accessible CPU (central pro-
cessing unit). In any case, ML and DL AI assistance can help optimize 
the design, fabrication, and performance of oxygen delivery systems, 
such as oxygen carriers, oxygen generators, or oxygen sensors. This 
can improve oxygen therapy’s efficiency, safety, and accuracy for vari-
ous conditions. ML allows for shorter training and can be implement-
ed quickly, offering lower precision. DL comes with more extended 
training, but higher accuracy is possible with proper models since it 
can make non-linear, complex correlations. This is getting more im-
portant when supply chains are stretched or the healthcare facility is 
in difficult context or severe conditions, including very low, very high 
humidity, temperature, or high altitudes. Notably, Oxygen is scarcer at 
higher altitudes (e.g., oxygen levels from sea level at 20.9% O2, 2,000 
m 19.4% or even 18.6% at 3,000 m). Patients in the installations of 
these higher altitudes may require higher volumetric flow rates for 
acceptable medical-oxygen quality than patients at sea level, especial-
ly true for longer-duration therapy because temperature and humidi-
ty tend to decrease at higher altitudes [22]. Since two parameters play 
opposite directions, deep learning modeling might be the only way to 
define the best or optimum outcome.

While we focused on optimizing the MOC process performance 
and quality of treatments, the analysis quickly shows the possibilities, 
including innovative approaches for Medical O2, an essential medicine 
[30]. One example is to use ML or DL to make the most of the flexible 
nature of PSA-based MOC in the monitored environment (illustrated 
in Figure 1) to determine MOC optimal control to meet the patient’s 
oxygen requirement in real-time. The effects of design and operating 
conditions shall be mapped to help the designers and engineers map 
outlet product specifications and production effectiveness [31]. To 
make it practical and accurate, the way forwards would be an efficient 
translation into machine learning models or even the deep learning 
networks that might be better suited to simulate the complex PSA 
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process. Continuing research is needed, and additional steps might 
include getting faster and more accurate real-time modeling and inte-
grating artificial intelligence into the mix. But there are still some lim-
itations of AI-assisted oxygen treatments and O2 production, such as:

a. Technical challenges: AI algorithms may face difficulties in 
dealing with complex, noisy, or incomplete data or in generalizing 
to new or diverse settings. They may also require high compu-
tational power, a reliable internet connection, and frequent up-
dates.
b. Ethical concerns: ML or DL based systems may raise issues 
of privacy, consent, accountability, transparency, and fairness, 
especially when handling sensitive health data or making life-or-
death decisions. They may also pose risks of bias, discrimination, 
or error.
c. Human factors: AI systems may encounter resistance or 
mistrust from patients or clinicians, who may not understand 
how they work or what benefits they offer. They may also require 
training, education, and collaboration to ensure proper use and 
integration.

Rajpurkar, et al. [25] discussed these challenges and referred to 
the US CMS (Center for Medicare and Medicaid Services) Overview 
of the progress, challenges, and opportunities for AI in health. This 
applies to medical Oxygen as well. Their article argues that collecting 
medical data for AI can be difficult for various reasons. One reason is 
the cost of the devices needed to capture the data, such as scanners 
or cameras. These devices can be expensive and inaccessible in many 
healthcare settings, which limits both the availability and diversity of 
data. Another reason is the data size, especially images, which can be 
too large to fit into standard neural networks. 

There are several ways to deal with this problem, such as resiz-
ing or changing the design, splitting them into smaller units, or using 
human experts to identify solutions of interest. However, these meth-
ods can also introduce drawbacks, such as losing fine details, break-
ing thermodynamics/optimal relationships, or adding manual steps. 
While this “data limitation” can be limiting for other applications of 
AI in healthcare, in the case of Medical Oxygen, there is much better 
control of the data as soon as we get a good model well based on the 
laws of physics. Also, probing data can be obtained from non-expert 
sources, such as crowdsourcing platforms or other AI models. How-
ever, these sources can also introduce noise or inaccuracies into the 
labels, and raise privacy concerns, as the data have to be shared with 
multiple parties. 

We can also identify how bias can affect medical datasets and AI 
models related to MOC. We might assume that they are influenced 
by genre, age, race, etc. One type of bias is single-source bias, which 
occurs when a dataset is generated by a single system with fixed set-
tings, such as a single camera with a specific resolution or angle. This 
type of bias can limit the generalization ability of AI models, as they 
may not perform well on data from different sources or settings. But 

how significant is it on the results? That would orient the way forward 
using the approach. Some possible solutions to mitigate single-source 
bias include performing site-specific training and validating models 
on datasets from multiple sources, and adapting models to each re-
gion or age group or where Ai-assisted MOC are deployed. Medical 
AI raises ethical concerns in many areas or treatments, such as regu-
lating AI in medicine, allocating responsibilities among researchers, 
physicians, and patients, and the equity and fairness of data use and 
access. They should also be raised for medical oxygen treatment and 
production with AI assistance. The text implies that these concerns 
must be addressed carefully and responsibly to ensure the safety and 
quality of medical AI. The following figure outlines the challenges and 
the opportunities associated with AI-assisted technologies and treat-
ment illustrated by the Centers for Medicare & Medicaid Services. As 
a folding remark, PSA plants can be turn-key units when adequately 
optimized, e.g., using Machine Learning or Deep Learning tools dis-
cussed in this article but in conjunction with good modeling and ther-
modynamic tools. However, optimization is not the only required item 
in implementing a PSA Oxygen plant. For example, the staff operating 
and maintaining these MOCs requires specialized training and sup-
port. In addition, while they can be monitored through the AI-assisted 
framework, strict maintenance schedules and resources are needed 
to prevent malfunctions, while a reliable supply chain is required to 
meet any additional needs.

Conclusion 
In this article, we discussed some of the technical challenges 

and ethical concerns of medical oxygen production with MOC and 
treatments (such as Oxygen Therapy) using ML or DL, focusing on 
the issues related to optimization models, data collection, and other 
technical considerations. We cover prospective studies and advances 
in MOC, which have reduced the disparity between research and de-
ployment. The flexibility of MOC makes it so that PSA oxygen devices’ 
operation can be optimized for improving oxygen therapy and saving 
lives. ML and DL are both types of AI that can be used to optimize the 
PSA process. While machine learning can automatically adapt with 
minimal human interference, deep learning uses artificial neural net-
works and more resources to mimic the human brain’s learning pro-
cess and generates more accurate outcomes. It explains how medical 
AI data for medical Oxygen are less limited than other applications of 
AI in healthcare by the cost of equipment, the size of inputs, and the 
availability of labels. It also describes how labels can be obtained from 
different sources, such as experts, crowdsourcing, or other AI models, 
but with varying degrees of accuracy and privacy. We also address 
several promising research avenues for novel medical Oxygen with 
AI-assisted capabilities, including non-image/non-bias data sources, 
unconventional problem formulations and human–AI collaboration. 
Finally, we consider meaningful technical and ethical challenges in 
issues spanning from data scarcity to racial bias. Notably, datasets 
can suffer from single-source bias, which can affect the generalization 
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ability of AI models. It suggests some possible solutions for the med-
ical oxygen case, such as integrating proper thermodynamic models 
and performing site-specific training. Resolving these challenges 
would free AI’s potential, making healthcare more accurate, efficient, 
and accessible for patients worldwide. That AI-optimization PSA ox-
ygen device has a substantial potential for improving oxygen therapy 
and medical oxygen availability and quality and, in terms, of saving 
lives, particularly in LRS. But human–AI collaboration will be critical 
to long-term solutions, especially in LRS and remote locations.
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