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ABSTRACT

Constrained evolutionary algorithms for BED-LQ model (Biological Effective Dose) in Prostate cancer 
Hyperfractionation radiotherapy TPO are optimized with Pareto-Multiobjective (PMO) methods. Genetic 
Algorithm (GA) software is developed based on hyperfractionation constraints with in vitro main 
parameters dataset. Programming method results take in handle subroutines functions and matrix-algebra 
method for setting constraints. Results show PMO 2D imaging charts and numerical values of PMO Prostate 
cancer hyperfractionated TPO parameters. Applications for prostate tumors radiotherapy and stereotactic 
radiosurgery treatments are briefed.
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Introduction
The objective of this contribution is apply Constrained Genet-

ic Algorithms on radiotherapy BED-LQ model for prostate tumors 
[1-24,87-94] with an hyperfractionated schedule. BED-LQ model is 
considered acceptable, [1-24,40,74-79,87-94], for low dose fractions, 
while LQL and PTL ones are more appropriate for high doses—name-
ly, hypofractionated treatment [94]. Prostate cancer has approximate-
ly a long average survival time of [15,20,90-94] years [87-94], com-
pared to the rest of tumors. One of the reasons is its higher-proper 

TPot biological parameter (radiobiological potential doubling time), 
experimentally proven. Numerically, it is about 28 days in vivo and 
[2,19] in vitro, compared, for instance, to breast and head and neck 
tumors, [8.2, 12.5] and [1.8, 5.9] respectively, [87-94]. This fact im-
plies a longer survival time with several specific caracteristics. Those 
are a number of different stages in Surgical, RT, Radiosurgical, Che-
motherapy, Inmunotherapy, Hormonal Therapy, combinations of all 
of them, and treatment time related to every stage. Medical radiation 
oncology decisions vary case by case for each patient within a general 
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protocol of the cancer center or hospital radiation oncology, medical 
physics, and urology team [89]. Usually, radiotherapy protocol is ap-
plied during post-surgical treatment [89]. For surgery of brain met-
astatic nodules, it is oncohistologically proven that around the brain 
metastatic border nodules, infiltrated metastatic tumoral cells could 
be hidden to imaging-guide radiotherapy method [89]. The 3D- 4D CT 
and MRI precision to determine the exact boundaries of metastatic 
nodules and tumor constitutes a challenge for radiosurgery optimal 
treatment [19-24,75,85-94].

Nonlinear GA-PMO engineering software was improved with 
matrix algebra constraints and designed in programs/patterns for 
PMO-BED models. Thorough GA hyperfractionated radiotherapy TPO 
findings are presented both in 2D graphics and dataset. The BED 
model radiobiological parameters implemented are in vitro ones 
from [23,24,68], (Table 1). The matrix-algebra constraints and the ex-
tensive comparison among several parameters selection constitutes 
the innovation of the study. At 2D graphics, Pareto Optimal choice is 

sharply indicated. Results comprise TPO hyperfractionated RT treat-
ment planning, graphical and numerical. 2D GA charts are presented 
in multifunctional format, for 100, 150, and 250 Evolutionary Opti-
mization generations. 2D principal Pareto multiobjective graph is 
explained sharply. Numerical results present optimized dataset for 
dose fraction magnitude, number of fractions, and TDelay interval. The 
innovation of this study, based on previous evolutionary optimization 
methods for breast and head and neck tumors, is its GA algorithms 
and computational optimization for the rather complicated RT- TPO of 
prostate cancer. It is focused on hyperfractionation protocols and LG-
BED model, since high- dose models for BED hypofractionations are 
different. Original mathematical constrained algorithms and software 
engineering are developed to obtain graphical/numerical results. In 
brief, a constrained extension of previous Nonlinear Pareto-Multiob-
jective GA optimization was performed for radiotherapy BED models 
in Prostate tumors. Applications for radiotherapy hyperfractionated 
BED-TPO and future improvements in RT are explained in short.

Table 1: Software implemented dataset for GA programming with source references [38,43-45].

IN VITRO LQ PARAMETERS IMPLEMENTED [Chapman, Nahum, 2015]

Asynchronous populations of human tumor cell lines [chapman, Nahum, 2015] α[Gy-1] β[Gy-2]

TSU 0.06 0.048

PC-3 0.24 0.068

DU-145 0.31 0.048

LnCap 0.49 0.015

INTERVAL\AVERAGE FOR SOFTWARE [0.06, 0.049] 0.0421

LQ PARAMETERS IMPLEMENTED [ From author’s refs [23,24]]

BED-PARAMETERS MAGNITUDE\INTERVAL

TPOT [2.00, 19.00] (Days)

Tk 21(Days)

TTreatment [30,40] (Days)

Number of functions [37,45] (Fractions)

Pareto total prostate dose objective function [89]
Pareto 1: 70Gy

Pareto 2: 78Gy

Mathematical and Computational Methods
Following previous publications for Breast, and Head-Neck can-

cers, the Pareto-Multiobjective Optimization foundation BEDEffective 
model was set in software, [1-24,40,68,74-79,87-94]. Parameters in-
tervals are detailed in Table 1. Algorithms 1-4 set the formulas and 
constraints [85-88]. The radiobiological parameters alpha and beta 
are set as separated ones, not in quotient [alpha/beta] because of the 
programming patterns functionality. This low-dose LQ-BED model 
constitutes the fundamentals for hyperfractionated radiotherapy 
TPO, although there are variations among authors [20-25]. The gen-
eral Pareto-Multiobjective [Algorithm 1] that was set, with Chebyshev 
L1 norm, [Algorithms 2-4], reads,

 Minimize,

  1 2( ) ( ( ), ( ),.... ( )),NF X f X f X f X=
   

 Subject to,

  0, 1,..) ...(i fX o i MK r≥ =


(Algorithm 1)

where

F(x): Main function to be optimized.
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fi (x): Every function of same variables (x).

Ki (x): Constraints functions such as in general N ≠ M.

BED model has been adapted on the difficulty to obtain an stable 
and reliable TPot magnitude. PMO in Prostate, [ 24,88,89] tumors sim-
plest BED model reads,

 Chebyshev L1 Optimization, 

 for i=1,2 minimize pareto, 

 DOSE1 -BEDEffective| L1 With,

  

(2)1 ...... Treatment Delay
Effective

Potential

T Td LnBED K d
T

β
α α

− × = × + − − ×       ;

(Algorithm 2)

where,

BED: The basic algorithm for Biological Effective Dose initially de-
veloped by Fowler et Al. [22-25,89- 94].

k: Optimal Number of fractions for hyperfractionated TPO. Opti-
mization parameter [22-25,89-94]. 

d: Optimal Dose magnitude for every fraction. Optimization Pa-
rameter [ Gy] [22-25,89-94].

α: The basic algorithm constant for Biological Effective Dose 
models. Radiobiological experimental parameter in vitro. [ Gy-1] [ 22-
25,89-94].

β: The basic algorithm constant for Biological Effective Dose mod-
els in vitro. Radiobiological experimental parameter. [ Gy-2]. It is very 
usual to set in biological models [ α / β in Gy].

TTreatment: The overall TPO time. This parameter varies according to 
authors’ and institutions/hospitals criteria [22-25,89-94].

TDelay: The overall TPO time delay for clonogens re-activation. This 
parameter varies according to authors’ experimental research.

TPotential: The potential time delay for tumor cell duplication. This 
parameter varies according to authors’ experimental-theoretical re-
search.

DOSE: The dose magnitudes for lung cancer simulation algorithm 
for Biological Effective Dose [22-25,89-94]. Software patterns were 
calculated around intervals prostate DOSE ϵ [70,78] Gy.

Equation 1 [created for software patterns, Casesnoves, 2022, 
based on BED model [Fowler mainly]. - Prostate PMO algorithm [1-
25,85-90] implemented in software. The intervals for optimization 
parameters in software are detailed. It is a constrained-subroutines 
Matlab® improvement from a series of previous research in radio-

therapy. At programming trials it was found that precision was in-
creased by using subroutines with algebraic constraints in principal 
patterns. Therefore, the constraints algebraic algorithm developed 
for Pareto- Multiobjective problem, [Algorithms-3-4, Casesnoves 
2023] reads,

 Constraints, For Pareto, Functions i=1,2, and lower- Upper limits 
of optimization parameters,

  ( )Lower i i UpperTreatment iS K d T S≤ + + ≤

(Algorithm 3)

where

SLOWER: Summatory of all lower constraints for parameters [ K, 
d, T]. 

SUPPER: Summatory of all upper constraints for parameters [ K, 
d, T]. 

Ki: Dose fraction number parameter for [ i = 1, 2].

di: Dose fraction magnitude parameter for [ i = 1, 2]. 

TTREATMENT: Treatment time magnitude parameter for [ i = 1, 2].

The subroutines programming strategy implemented reads,

 Matrix algebra subroutines For Constraints,

  

[ ]

[ ]

max

1 max

max

min

2 min

min

,
K

d

T

K

d

T

K S
A d d

T T

K S
A d d

T T

   
   × ≤   
   
   
   
   × ≥   
   
   

(Algorithm 4)

were,

SK,d,T : Upper (maximum) and Lower boundaries for parameters [ 
K, d, T ], according to Algorithms 1- 2.

A1,2: Matrices for numerical values, (Table 1). 

The programming method(s) used for this study are based on 
previous algorithms papers [1- 20,24,68,74,88,89]. For GA-PMO mod-
eling, Equation 1 and Algorithms 1-2 are implemented on 2D pro-
grams. However, Algorithm 2 was programmed with Algorithm 3 ma-
trix constraints subroutines- functions. Table 1 shows Constrained GA 
Optimization selected parameters according to Algorithms 1-4. Table 
1 presents the 2D GA-PMO simple programming method variations to 
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get accurate calculations, 2D Graphical Optimization 2D imaging-pro-
cessing charts, error determinations, and get precise approximations 
for hyperfractionated PMO-BED model.

Programming Dataset
Matlab Constrained GA optimization dataset is detailed, Table 

1. Constraints matrix algebra are implemented through [Algorithms 
3-4]. In Matlab and other similar systems, the constraints can be 
set as a matrix equation. Simulation dataset from comes from [20-
25,68,74,75,80,81,85-94]. The GA simulations were done with nu-
merical-experimental interval-data for GA implemented arrays. TPo-
tential in prostate neck cancer for in vitro experimental data is about 

[2,19] days. Table 1 shows all dataset implemented with references 
for in vitro parameters at BED-LQ model at low doses. The reason to 
use in vitro dataset in this first prostate study is that currently the in 
vivo radiobiological differences differ in the literature.

2D Optimization Results
2D GA Graphical results are shown in (Figures 1-4). The con-

strained optimization results are presented sharply in 2D multi-
functional charts. Constrained optimization with [Algorithms 1-4] 
gets better results than unconstrained one in previous publications 
[68,87,89-94]. However, differences are not very high in magnitude 
orders.

Figure 1: 100 generations constrained optimization Multifunctional GA 2D graph. The first one is the most important graph given by software 
when PMO is performed to validate the GA-optimization precision. Two optimal Pareto-value choices, inset, are marked, red and black arrows. 
The fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions charts. In this study all programmed optimizations show 
low residuals, therefore, results are acceptable.
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Figure 2: 150 generations constrained optimization Multifunctional GA 2D graph. The first one is the most important graph given by software when 
PMO is performed to validate the GA-optimization precision. Since generation number is 150, the average distance among individuals remains a 
bit unclear. Then, at Figure 4, with 250 generations, the precision jump is got sharply. The fundamentals of Nonlinear PMO calculations are usually 
based on 2D PMO functions charts. In this study all programmed optimizations show low residuals, therefore results are acceptable.

Figure 3: First 250 generations constrained optimization Multifunctional GA 2D graph. The upper image, enhanced, is the most important graph 
given by software when PMO is performed to validate the GA-optimization precision. The fundamentals of Nonlinear PMO calculations are 
usually based on 2D PMO functions charts. In this study all programmed optimizations show low residuals, therefore, results are acceptable.
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Figure 4: Second 250 generations constrained optimization Multifunctional GA 2D graph. Program and subroutines got to get precision jump 
clearly, approximately around 50th generation. The upper image, enhanced, is the most important graph given by software when PMO is performed 
to validate the GA-optimization accuracy. The fundamentals of Nonlinear PMO calculations are usually based on 2D PMO functions charts. In this 
study all programmed optimizations show low residuals, therefore, results are acceptable.

Numerical Results
Constrained PMO-GA optimization numerical data is shown in 

(Table 2). Constrained optimization show be acceptable within nu-

merical intervals [1-24,40,68,74-79,87-94]. Format presented as in 
previous publications for other types of cancer [ 85-94].

Table 2: Brief of constrained optimization Algorithms 1-4 numerical results. Pareto distance is about 10-2 magnitude order.

GENETIC ALGORITHM ARTIFICAL INTELLEGENCE OPTIMIZATION NUMERICAL RESULT FOR PROSTATE TUMORS HYPERFRAC-
TIONATED RT TREATMENT [250 GENERATIONS]

PARAMETER MANITUDE INTER-
AVAL RESULT COMMENTS

optimal dose frac-
tions number [38,44] integers According to literature standards [1-21,74-86].

optimal dose frac-
tions magnitude [1.5655, 1.6103] Gy within usual protocol in literature [1-21,74-86]. set with intervals according to different criteria

Optimal TTreat-
ment [32,34] days within usual protocol in literature [1-21,74-86]. set with intervals according to different criteria. The rt 

treatment varies according to weekends breaks, secondary effects, patient circumstance, etc.

pareto Distance [0.0177829, 0.0413472 Acceptable 10-2 magnitude order

Radiotherapy Medical Physics Applications
(Table 3) shows a resume of radiotherapy hyperfractionated 

treatment applications for prostate tumors. Medical Physics principal 
applications for radiotherapy TPO are explained briefly.
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Table 3: Some radiotherapy and radioprotection for RT head and neck cancer TPO Medical Physics study applications derived from results.

BED-LQ RADIO THERAPY OPTIMIZATION APPLICTIONS FOR HYPERFRACTIONATED RT PROTOCOL

APPLICATION MEDICAL PHYSICS AND RADIATION 
ONCOLOGY FILED ADDITIONAL

Optimal number of fractions RT schedule Avoid side effects

Biological Models TCP TCCP Improvements Patient Treatment Precision Radio protection impartments, more Quality Life 
and OARs Radioprotection

Post-RT treatment survival time Decrease of TCP, and TCCP Increase of Survival Time

Biological Models Research improvements improvements LINAC software, Cyberknife®, 
Gammaknife® and imaging guided TR Treatment

NTCP models Possible applications also Decrease of Side-Effects at OARs

Discussion and Conclusion
The objective of the study was to apply constrained GA Optimiza-

tion for prostate cancer hyperfractionated RT treatment with BED-LQ 
model. For low doses, LQ model is suitable in RT treatment planning. 
A constrained PMO-Multiobjective method was programmed with 
subroutines. Mathematical Algorithms 1-4 for the objective are pre-
sented/explained. Results comprise a series of 2D GA graphical series 
and numerical dataset, Tables 1 & 2. Constrained Optimization with 
Algorithms 1-4 got to get a Pareto Distance of about 10-2 magnitude 
order with 250 generations. When number of generations increas-
es from 100, the running time of the constrained programs rises to 
approximately 2-3 minutes. Grosso modo, a constrained RT-BED hy-
perfractionation model with GA was performed with Pareto- Optimi-
zation in one of the highest incidence/prevalence prostate tumors. 
sApplications for optimal RT planning come forward from results.
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