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ABSTRACT

Background: Calcium is the fifth most abundant element in the adult human body. The free ionized calcium 
(Ca2+) is responsible for a variety of physiological processes and tightly maintained mainly by action of 
calciotropic hormones and other nutrients. Calcium-sensing receptor (CaSR/CaR) is a cell-surface receptor 
that responds to, or “senses,” extracellular Ca2+ concentrations in parathyroid, kidney and other tissues. 
The aim of the review is to get into the fine details of physiologic mechanisms responsible for extracellular 
calcium-sensing receptor actions in the regulation of vascular tone and blood pressure.

Method: Studies were accessed through an electronic web-based search strategy from PubMed, Cochrane 
Library, Google Scholar, Embase, PsycINFO, and CINAHL by using a combination of search terms.

Results/Discussion: The central role of the CaR is the regulation of calcium homeostasis, but it is also 
expressed in non-calciotropic tissues. It is well known that calcium is an important second messenger 
and regulator of vascular contractility. An increase in intracellular calcium concentration ([Ca2+]i) in 
endothelium or in VSMCs exerts opposing influences on blood vessel diameter. Ca2+ is also an extracellular 
first messenger and binding of Ca2+ to CaR mediate biphasic effects with an initial endothelium-independent 
vasoconstrictions followed by endothelium-dependent relaxations. The vascular endothelium CaR 
activation mostly results in an activation of the G proteins (Gq/11). In parallel, CaR also activates PI4K and 
carries out the first step in inositol lipids biosynthesis. Endothelial calcium ‘‘waves’’ and “puffs” is an initial 
step required for endothelium-dependent vasorelaxations. The myoendothelial gap junctions have also a 
major role in electrical spread of hyperpolarization from the ECs to the VMSCs. Furthermore, the main 
source of NO• in the vasculature is the microvascular endothelium and contribute to cGMP activation in 
VMSCs and influence vascular reactivity.

Conclusion/Perspectives: it is not surprising that CaR is involved in the regulation of such diverse 
processes as hormone secretion, gene expression, ion channel activity, modulation of inflammation, 
proliferation, differentiation and apoptosis.
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Introduction
Humphry Davy first recognized calcium as an element in 1808 and 

the name was given after the Latin for lime: calx [1]. Calcium is the fifth 
most abundant element in the adult human body in which 99% re-
sides in the bones and teeth as the hydroxyapatite [Ca10(PO4)6(OH)2] 
crystal. Furthermore, about 0.9% is found intracellularly and the re-
maining is present in the extracellular [2]. The normal serum calcium 
level is ~8.8 to 10.4 mg/dl (2.2 to 2.6 mmol/L) [3]. It is present in 
three forms: about 50% is free ionized, about 10% is combined with 
various anions (bicarbonate, citrate, phosphate, lactate, and sulphate) 
and the remaining 40% is bound to serum proteins, mainly serum 
albumin. The extracellular fluid (ECF) ionized calcium (1.0 – 1.25 
mmol/L) concentration is 10,000 times higher than the concentration 
of the intracellular fluid (ICF) ionized calcium because cell membrane 
permeability to Ca2+ is low and cells also have powerful mechanisms 
for extrusion, sequestration and buffering of calcium [4]. Neverthe-
less, total calcium concentration in the cell interior varies during nor-
mal function by up to 10-fold (e.g. from 10-4 to 10-3 mmol/L) [5]. 
The free ionized calcium (Ca2+) is responsible for a variety of physio-
logical processes including neuromuscular transmission, muscle con-
traction, cardiac automaticity, nerve function, hormone secretion, cell 
division and movement, intercellular adhesion, co-factor in the blood 
coagulation and cell motility and certain oxidative processes [6-8]. It 
is also a major intracellular messenger in many intracellular respons-
es to chemical and electrical stimuli and required by many enzymes 
for full activity. The plasma ionized calcium concentration is tightly 
maintained mainly by action of three main calciotropic hormones 
(parathyroid hormone, calcitriol and calcitonin) and other nutrients, 
most notably magnesium and phosphorus [9,10]. The way the body 
maintains and regulates extracellular calcium levels is a complex puz-
zle that has intrigued researchers for decades. One large piece of this 
puzzle that is falling into place concerns a cell-surface receptor that 
responds to, or “senses,” extracellular calcium-ion concentrations in 
parathyroid, kidney and other tissues. A receptor exhibiting molec-
ular sensor of free ionized serum calcium (calcium-sensing receptor 
(CaSR/CaR)) was cloned from the bovine parathyroid gland, human 
parathyroid cells and rat kidney cells respectively [11-13]. Although 
the central role of the CaR is the regulation of calcium homeostasis, 
it is also expressed in non-calciotropic tissues as well as regulates a 
multitude of cellular processes unrelated to mineral ion homeosta-
sis. This review summarizes the pathophysiology of atherosclerosis 
plaque progression with emphasis on plaque progression. It also of-
fers the recently published literature on different biomarkers and ex-
amine whether incorporation of these markers might improve clinical 
decision.

Methods 
PubMed, Cochrane Library, Google Scholar, CINAHL, Embase, and 

PsycINFO database were used for studies reporting the physiologi-

cal mechanism of extracellular calcium-sensing receptor action in the 
regulation of vascular tone and blood pressure from study conception 
to May 2021. Zotero reference management software for Windows 
was used to download, organize, review and cite the articles. I also 
manually searched cross-references in order to identify additional 
relevant articles. A comprehensive search was performed using the 
following search terms: “calcium-sensing receptor”, “extracellular 
calcium-sensing receptor action”, “mechanism of extracellular calci-
um-sensing receptor action in the regulation of vascular tone”, and 
“mechanism of extracellular calcium-sensing receptor action in the 
regulation of blood pressure”. Boolean operators like “AND” and “OR” 
were used to combine search terms.

Result/Discussion/ on the Role of Vascular Calcium 
Sensing Receptori the Regulation of Vascular Tone 
and Blood Pressure

The vascular endothelium is a cell monolayer and plays a key role 
in the regulation of vasomotor tone through the release of endothelin, 
NO, PGI2, and EDHF. Vascular tone and hence blood pressure are also 
determined by the contractile state of vascular smooth muscle cells 
(VSMCs) [14,15]. It is well known that calcium is an important second 
messenger that acts as an important regulator of vascular contractil-
ity. The nature of calcium signals in endothelium and smooth mus-
cle are fundamentally different. The major pathways are voltage-de-
pendent Ca2+ channels (VDCC) and nonselective cation channels at 
the plasmalemmal membrane or the internal store release channels 
found in the sarcoplasmic reticulum (SR) membrane (ryanodine 
(RyR) and the inositol trisphosphate receptors (IP3R)) [16,17]. An in-
crease in intracellular calcium concentration ([Ca2+]i) in endothelium 
or in VSMCs exerts opposing influences on blood vessel diameter for 
precise regulation of organ and tissue perfusion. Vasoconstrictors act 
through increasing [Ca2+]i as well as on the apparent calcium sensitiv-
ity of the contractile process in VSMCs, whereas relaxing factors have 
the opposite effect. In contrast to the VSMCs, an increase in endotheli-
al [Ca2+]i results in vascular relaxation through endothelium-derived 
relaxing factors such NO, PGI2, and EDHF [14]. Ca2+ is also an extra-
cellular first messenger through the CaR expressed in ECs, VSMCs and 
on perivascular nerves of blood vessels. It is speculated that CaR has 
non-trivial effects on vascular tone and blood pressure in response to 
systemic as well as local changes in [Ca2+]o [18]. Binding of Ca2+ to CaR 
mediate biphasic effects with an initial endothelium-independent 
vasoconstrictions followed by endothelium-dependent relaxations. 
An increase [Ca2+]o from 1 mM to 6 mM potentiates pre-contracted 
tone in endothelium-removed vessel segments by affecting Gα pro-
tein subunits [19,20]. However, an increment evokes the endothelial 
membrane hyperpolarization and factors in a functionally intact en-
dothelium by activating of potassium channels [21,22]. Under phys-
iological condition, CaR-mediate vasorelaxations is more dominant 
than vasoconstrictions. In support of this hypothesis, increasing di-
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etary calcium levels have been reported to have lowering effects on 
blood pressure in models of hypertension. A calcimimetic, NPS R-568, 
has been reported to significantly decrease blood pressure in uremic 

and spontaneously hypertensive rats but not in normotensive rats 
[23,24]. 

Figure 1: Calcium-sensing receptor-regulated intracellular signaling pathways in the endothelium of blood vessel.

The Major Proposed Mechanisms of Vasodilation 
The vascular endothelium CaR activation mostly results in an ac-

tivation of the G proteins (Gq/11) and causes hydrolysis of membrane 
phospholipid PIP2 through the stimulation of phospholipase C (PLC) 
(Figure 1) [25]. The stimulation of PLC then results in the generation 
of IP3 and promotes the release of Ca2+ into the cytoplasm by activat-
ing of endoplasmic or sarcoplasmic reticulum IP3-gated calcium re-
lease channels. Furthermore, PLC activation also causes the genera-
tion of diaglycerol and provides the signals for activation of the 
serine/threonine kinase protein kinase C (PKC) [26]. Due to the ab-
sence of VDCC on the endothelial cells (ECs) activation of PKC causes 
calcium influx through transient receptor potential channels (TRPC1, 
TRPC3, TRPC4, TRPC6, TRPV4, etc.) from the extracellular milieu and 
causes feature increase in cytosolic free Ca2+ within into ECs. In paral-
lel, independent of heterotrimeric G proteins, CaR also activates PI4K 
and carries out the first step in inositol lipids biosynthesis by a 
Rho-dependent mechanism (Figure 1) [26]. Endothelial calcium 
‘‘waves’’ and “puffs” (small punctate and local increases of calcium) is 
an initial step required for endothelium-dependent vasorelaxations. 

An increase in [Ca2+]i (from ~ 300 – 500 nM), results in the activation 
of in the vascular endothelium calmodulin (CaM) and induces a con-
formational change of the complex involving an interlacing of cyto-
plasmic loops that leads to the opening small and intermediate con-
ductance calcium-activated potassium channels (SKCa and IKCa) on 
endothelium independent of the membrane potential (Figure 2) [27-
29]. The intracellular K+ moves down electrochemical gradient 
through the opened SKCa and IKCa channels to the extracellular space 
and results in the hyperpolarization of the ECs (Figure 2) [30]. The 
hyperpolarization of the endothelial cells is transmitted to the smooth 
muscle cells by direct electrical coupling through myoendothelial 
junctions and/or by the accumulation of K+ in the intercellular myo-
endothelial space. An efflux of K+ in the lumen of the blood vessel from 
endothelium would be washed away by the flowing blood and most 
likely without physiological consequences. However, the membrane 
potential hyperpolarization induced by SKCa and IKCa channels open-
ing would further increase calcium influx in ECs by increasing the 
electrochemical gradient for calcium [14]. An efflux of K+ toward the 
abluminal side can also accumulate in the intercellular space between 
endothelial and smooth muscle cells. When it reaches sufficient levels 
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(from ~ 4 mM to 12 mM) there will be an activation of both inwardly 
rectifying potassium channel (Kir) and Na+/K+ ATPase on the mem-
brane of the VSMCs in the immediate vicinity of the ECs releasing K+ 
[31,32]. It is important to note that a moderate increase in potassium 
concentration, in the range of 1 to 15 mM, enhances potassium efflux 
through Kir at physiologically relevant potentials [33]. At the expense 
of ATP, Na+/K+ ATPase exchanges three intracellular Na+ for two ex-
tracellular K+ [34]. Thus, the net result is loss of positively charged K+ 
from VSMCs results in hyperpolarization and subsequent dilation of 
the artery (Figure 3). It is also possible that other K+ channels such as 
Kv7 and KATP channels expressed in VSMCs may be involved in mediat-
ing CaR induced vasorelaxations [35,36]. Gap junctions are the min-
ute tunnels with internal diameter of 1.5 nm and exist not only be-
tween ECs and between VMSCs but also between endothelium and 
vascular smooth muscle (myoendothelial gap junctions). The myoen-
dothelial gap junctions have a major role in electrical spread of hyper-
polarization from the ECs to the VMSCs [37,38]. K+ could be an EDHF 
or contribute to the mechanism of EDHF-mediated responses. Fur-
thermore, SKCa and IKCa channels expressed on the ECs have pivotal 
roles in mediating endothelium-derived hyperpolarisations and cou-
ple to relaxation of VSMCs. The endothelial CaR can also modulate the 
diameter of blood vessels via another type of endothelium derived 
hyperpolarizing factor (EDHF) [39]. The endothelial CaR activation 
via Gq subunits of heterotrimeric G proteins activation, result in acti-
vation of phospholipases A2 (PLA2). CaR-induced activation of ERK 
can also lead to the phosphorylation and activation of PLA2 [40]. How-
ever, PKC activity is only partially responsible for CaR-mediated acti-
vation of PLA2 (26). Because PLA2 is constitutively active, the translo-
cation to the membrane places and in contact with the phospholipid 
substrate, promotes the release of arachidonic acid within the cell. 
The liberated arachidonic acid has several possible fates: either rein-
corporated into plasma membrane phospholipids and act as a mes-
senger or metabolized further by cyclooxygenase, epoxygenase, lip-
oxygenase, or Ω-hydroxylase (Figure 4) [41-43]. The first mechanism 
proposed for EDHF dilations involves the metabolism of arachidonic 
acid through the epoxygenase pathway to form epoxyeicosatrienoic 
acids (EETs). The EETs diffuse from the ECs to the VMSCs and activate 
large conductance calcium-activated K+ channel (BKCa) and results in 
further K+ efflux from the smooth muscle cell (VSMCs hyperpolariza-
tion) and vasorelaxation (Figure 5) [44,45]. The opening of the BKCa 

also promotes the closure of VDCC and thus opposing vasoconstric-
tion [15]. EETs also activate smooth muscle vanilloid transient recep-
tor potential channel (TRPV4) and increases the frequency of calcium 
sparks and subsequently that of spontaneous transient outward cur-
rents. The BKCa channels are clustered in a plasmalemmal region close 
to the RyR calcium SR release channels and so are exposed to a high 
concentration of store-released calcium early after SR calcium chan-
nel opening [46,47]. In arterial smooth muscle and intact arteries, 
Ca2+ sparks are observed just under the cell membrane consistent 

with a predominant subsarcolemmal localization of the RyR Ca2+ re-
lease channels in the sarcoplasmic reticulum. This EET-dependent 
activation of a calcium-signaling complex (TRPV4-ryanodine recep-
tors-BKCa) hyperpolarizes and relaxes the smooth muscle cells [48]. 
EETs may also regulate the activity of endothelial SKCa and IKCa. EETs 
activate BKCa through a G protein–signaling cascade, however, the ex-
istence of a specific cell membrane receptor (s) for EETs and stimu-
late production of cAMP and activate protein kinase A and causes hy-
perpolarization through facilitate opening of both BKCa and KATP in 
VMSCs has been also established (Figure 5) [49,50]. Metabolism of 
arachidonic acid through the lipoxygenase pathway results in re-
leased of 12-(S)-HETE from the endothelium and activates BKCa on the 
smooth muscle cells. Similarly, prostacyclin, the major metabolite of 
arachidonic acid produced by cyclooxygenase in ECs, activates IP3 re-
ceptors on VMSCs [51]. Depending on the artery and/or the species, a 
hyperpolarization can occur. ATP-sensitive potassium channels (KATP), 
BKCa, inwardly rectifying potassium channels (Kir) and/or voltage ac-
tivated potassium channels (KV) can be associated with the prostacy-
clin-induced relaxation [52]. Moreover, myoendothelial gap junctions 
can also allow passage of small water-soluble molecules (< 1,000 Da) 
including cyclic guanosine monophosphate, inositol triphosphates, 
and inorganic ions, therefore, provides VMSCs relaxation [53-55]. En-
dothelium-derived NO is synthesized by endothelial nitric oxide syn-
thase (eNOS) which converts semi-essential amino acid L-arginine to 
L-citrulline and NO (Figure 6). The eNOS stimulation is due to the ac-
tivation of calmodulin, as a consequence of increases in [Ca2+] i in vas-
cular endothelium [56]. Thus, high [Ca2+]i-induced eNOS upregulation 
is indeed CaR mediated. The main source of NO• in the vasculature is 
the microvascular endothelium and contribute to cGMP activation in 
VMSCs and influence vascular reactivity. NO regulates vascular tone 
by different signaling pathways. The first pathway is the classic NO-
sGC-cGMP vasodilator mechanisms (Figure 7) [57,58]. The NO• 
formed diffuses to underlying VMSCs and causes the stimulation of 
soluble guanylate cyclase (sGC), which induces formation of cyclic 
guanosine monophosphate (cGMP). Cyclic GMP activates protein ki-
nase G (PKG), which prevents the calcium influx from VDCC and calci-
um release mediated by IP3R. PKG also acts on sarco/endoplasmic 
reticulum calcium ATPase (SERCA) to promote the reuptake of cyto-
solic calcium into the sarcoplasmic reticulum (SR) and the opening of 
BKCa activation in the VMSCs (Figure 7) [59,60]. As a result, the intra-
cellular concentration of calcium decreases and calmodulin is inacti-
vated which no longer able to activate Myosin light chain kinase 
(MLCK). Calcium depletion also increases the activity of myosin light 
chain phosphatase (MLCP). The actin-myosin cross-bridge is broken 
and smooth muscle relaxation ensues. In the second pathway, inde-
pendent of the classic NO-sGC-cGMP pathway, NO• can undergo reac-
tions in the presence of an electron acceptor with cysteine thiol con-
taining compounds to form biologically active S-nitrosylated 
molecules [61,62]. Formation of S-nitrosylated has many functions 
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(Figure 7). S-nitrosylation increases the activity of sarco/endoplas-
mic reticulum calcium ATPase (SERCA) to enhance the reuptake of 
cytosolic calcium into the sarcoplasmic reticulum and accelerates cal-
cium depletion and induces relaxation [63]. Similarly, G protein cou-
pled receptors (GPCRs) can be directly S-nitrosylated by NO, which 
impedes the binding of ligands for the receptor or G-protein coupling. 
The S-nitrosylated molecules can regulates the expression and func-
tions of GPCRs. NO and S-nitrosothiols also modulate the activity of 
GPCR kinase 2 (GRK2) which phosphorylates β-adrenoceptors and 
induce receptor desensitization and internalization to prevent the 
loss of β-adrenergic signaling in blood vessels to induce vasodilata-

tion [64-66]. S-nitrosoglutathione also inhibits α1-adrenoceptor-me-
diated vasoconstriction and ligand binding [66]. Likewise, S-ni-
trosylation of cysteine 289 of the AT1 receptor decreases its binding 
affinity for angiotensin II. Cytosolic β-arrestin binding to CaR and 
GRK-phosphorylated GPCRs sterically impedes the interaction of 
G-proteins with activated GPCRs, resulting in GPCR signaling termina-
tion. β-arrestin 2, can be S-nitrosylated on cysteine 410 by endoge-
nous NO and S-nitrosogluthathione, which promotes binding of β-ar-
restin 2 to clathrin heavy chain/ β-adaptin, thereby accelerating 
receptor internalization and induces vasorelaxation [67-70]. 

Figure 2: Roles of SK and IK channels in the regulation of vascular function.

Figure 3: Mechanism of K+ acting as EDHF.
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Figure 4: Several possible fates of arachidonic acid.

Figure 5: Mechanism of EET acting as EDHF.
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Figure 6: Biosynthetic pathway for nitric oxide. NADPH is an essential cofactor for this reaction and L-NAME acts as an inhibitor of (at least) two 
steps in the pathway.

Figure 7:  Regulation of vascular tone by nitric oxide (NO).
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Conclusion 
Calcium is a crucial signal molecule that acts via changes in in-

tracellular Ca2+ levels through the actions of calcium channels and 
pumps. However, it is now well known that calcium may also be an 
extracellular first messenger through a G-protein-coupled recep-
tor that senses extracellular Ca2+ concentration, the calcium sensing 
receptor (CaR). Binding of extracellular Ca2+ or other ligands to the 
CaR triggers a number of intracellular signaling systems like the ac-
tivation of Gαq proteins to result in stimulation of phospholipase C, 
which leads to the generation of second messengers (DAG and IP3) 
and intracellular Ca2+ release; inhibition of adenylate cyclase activi-
ty result in suppression of intracellular cAMP; activation of PKC and 
MAPK – p38, JNK/SAPK and MEK1/ERK1,2 etc. In addition to the G 
proteins, the CaR binds the scaffolding protein filamin A, G-protein 
coupled kinases (GRKs) and β-arrestins, which add the complexity of 
the downstream signaling mechanism of the receptor. It is now ev-
ident that the presence of the CaR in animal blood vessels of many 
types, in perivascular nerves, endothelial cells and vascular smooth 
muscle cells, suggests it may regulate the vascular tone. This could 
provide a mechanism for the almost 100-year-old observation that 
[Ca2+]o induces vasodilation. In particular, these novel results indicate 
that stimulation of CaRs induces endothelium-dependent vasorelax-
ations which are mediated by opening of the Ca2+-sensitive potassium 
channels, NO production and inhibit renin production. All together, 
these results indicate that the CaR may have a physiological role in the 
modulation of blood pressure.
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