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ABSTRACT

The effects of vascular endothelial growth factor A (VEGFA) supplementation at 5 ng/mL in IVP media on 
the development of porcine embryos were assessed in this study. Addition of VEGFA in the IVM medium 
increased monospermic (85.1%) and normal fertilization (68.0%) rates compared to those of the control 
groups (74.7 and 57.7%, respectively, P < 0.05). Both IVM and IVC media supplemented with VEGFA 
promoted a greater blastocyst rate compared to the control group (46% vs. 31%, P < 0.05). Also, the 
total cell number per blastocyst increased in the presence of VEGFA in IVC (74.4 ± 10) or both (81.8 ± 
8.2), compared to control during IVM or IVC (62 ± 11, P < 0.05). The apoptotic indices were reduced 
when VEGFA was contained in both IVM and IVC (2.4 ± 0.1%) media compared to the control group (5.5 
± 1.4%). Moreover, VEGFA increased GSH level by 1.4 to 3.4 folds, where it concomitantly decreased ROS 
by half fold in matured oocytes, 4-celled embryos and blastocysts. Taken together, the positive effects 
of VEGFA on oocyte maturation and embryonic development may be carried over from IVM to post-IVF 
development. It not only functions as a growth/paracrine factor, but also helps in maintaining the ROS-
GSH homeostasis by acting as an antioxidant during early embryogenesis in porcine species. 
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Introduction
The porcine embryo production in vitro (IVP) has been increas-

ingly attractive as a tool for biochemical research; it also bears great 
promise as a study model for both embryonic development and stem 
cell technologies [1,2]. In vitro maturation (IVM) of oocytes from an-
tral follicles is a valuable source to increase the number of fertilizable 
oocytes alternative to the in vivo oocytes [3]. Intensive efforts have 
been made to optimize the in vitro production (IVP) system of por-
cine embryos, but the yield and the quality of IVP embryos are still 
low compared to their in vivo counterpart [4,5]. Oocyte and embryo 
quality exerts a significant influence on the pre- and post-implanta-
tion development of embryos [6,7]. A great majority of improvements 
in oocyte development was based on the studies starting from the 
IVM oocytes to the developing blastocyst stage [3,8,9].

By ameliorating the suboptimal conditions for oocyte maturation 
and embryo culture systems, the pattern of gene expression could 
mimic closely that of the in vivo conditions, leading to increased pro-
duction of quality blastocysts [10,11]. Although strictly defined media 
for oocyte IVM and embryo IVP in domestic species are largely avail-
able, porcine oocyte- and/or blastocyst-promoting agents to improve 
the yield and quality of IVP embryos are still under investigation [12]. 
The efforts including addition of growth factors, cytokines, vitamins 
and/or amino acids to culture media have reached little consensus 
[4,13,14]. 

The VEGF signaling are found in animal reproductive system and 
these molecules function as paracrine/autocrine factors to promote 
cell proliferation, survival and steroid hormone production [15-17]. 
In porcine system, previous studies have demonstrated that VEGF 
signaling molecules, including VEGF and its receptor VEGFR2 are ex-
pressed in the ovary and at various stages of parthenogenetic embry-
os. Moreover, addition of VEGFA to the IVM or IVC medium promoted 
porcine oocyte maturation and enhanced subsequent parthenogenet-
ic and cloned embryo development [18-20]. There are some funda-
mental differences between fertilized and parthenogenetic embryos. 
In fact, IVF embryos add enhanced blastocyst development and dip-
loid chromosomes, the parthenotes have reduced TE cells counts and 
a higher relative proportion of apoptotic cells in inner cell mass and 
TE [21-24] compared to the fertilized embryos. Also parthenotes do 
not develop to term unless they have been genetically manipulated 
to express specific imprinted gene [25,26]. In the present study, we 
further investigated the joint effects of VEGFA treatments in both IVM 
and IVC media on the development of porcine IVF embryos with a 
similar protocol as in previous study.

Materials and Methods
Chemicals 

All chemicals used in this study were purchased from Sigma 
Chemicals (St. Louis, MO, USA), unless otherwise specified. Recombi-

nant Human VEGFA165 protein, 293-VE (R&D System, Minneapolis, 
MN) was used in the IVM and IVC media.

Oocyte Collection, Maturation and Embryo Culture 

Swine ovaries sampled from a local abattoir nearby Taichung city 
(Taichung Meat Market, Co. LTD.). Procedures for collection of ovaries 
and aspiration of follicles were described previously [27]. In brief, 
freshly harvested cumulus-oocyte complexes (COCs) were rinsed 
several times and cultured for 22 h in the NCSU-23 medium supple-
mented with 10% porcine follicular fluid, FSH (10 IU/mL) and hCG 
(10 IU/mL). The COCs were further cultured for an additional 22 h in 
the same medium without hormones.

Measurement of ROS and Intracellular GSH Levels

The matured oocytes, 4-celled embryos and blastocysts were 
sampled to determine intracellular ROS and GSH levels by the pro-
tocol described previously [27]. Briefly, H2DCFDA (2’, 7’-dichlorodi-
hydrofluorescein diacetate; Invitrogen, Eugene, Oregon, USA) and 
CellTracker Blue CMF2HC (4-chloromethyl-6.8-difluoro-7-hydroxy-
coumarin; Invitrogen, Eugene, Oregon, USA) were used to detect 
intracellular ROS by green fluorescence and GSH level by blue fluo-
rescence, respectively. Ten oocytes from each treatment group were 
incubated for 30 min in NCSU-23 supplemented with 10 μM H2DCF-
DA and 10 μM CellTracker. After incubation, oocytes were washed 
with DPBS containing 0.1% (w/v) PVA and placed into 10 µl droplets, 
and the fluorescence was observed under an epifluorescence micro-
scope (TE300; Nikon, Tokyo, Japan) with UV filters (460 nm for ROS 
and 370 nm for GSH). Fluorescent images were saved as graphic files, 
and their fluorescence intensities were analyzed with ImageJ soft-
ware (Version 1.44; National Institutes of Health, Bethesda, MD, USA). 
All image data were standardized by the untreated control oocytes for 
statistical analysis.

Sperm Preparation and in vitro Fertilization

Fertilization process has been described by Nguyen, et al. [10]. 
Briefly, diluted semen from two boars of proven fertility was supplied 
by a porcine artificial insemination center (Taichung, Taiwan), stored 
at 15°C and used for 2 days. Motile sperm were obtained by centrifu-
gation at 700×g with Percoll discontinuous gradient (2 mL 45% over 
2 mL 90%ofPercoll) for 15 min. Spermatozoa were collected from 
the bottom of the 90% fraction and washed in DPBS supplemented 
with 10% FBS, followed by centrifugation at 100×g for 5 min. After 
centrifugation, the sperm pellet was resuspended in modified Tris-
buffered medium (mTBM) containing 113.1 mM NaCl, 3 mM KCl, 7.5 
mM CaCl2.2H2O, 20 mM Tris, 11 mM glucose, 5 mM sodium pyruvate, 
and 0.2% (w/v) BSA. After 44 h of maturation, oocytes were freed 
from cumulus cells and matured oocytes were washed three times in 
mTBM that had been pre-equilibrated for 12 h at 39°C under a 5% 
CO2 incubator. After washing, groups of 30 oocytes each were ran-
domly placed into 45 μL droplets of mTBM medium covered with pre-
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warmed mineral oil. After dilution (10X), 5 μL of sperm suspension 
was added to a 45 μL drop of fertilization medium (mTBM) to give 
a final sperm concentration of 5×105 sperm/mL. The gametes were 
co-cultured for 6 h at 39°C in an incubator containing 5% CO2 in hu-
midified air.

Evaluation of Fertilization Rates

An experiment was designed to evaluate the fertilization rate. At 
10 h post-insemination, parts of oocytes were fixed in DPBS contain-
ing4% paraformaldehyde. The fixed oocytes were subjected to triple 
staining and observed under an epifluorescence microscope (TE300; 
Nikon, Tokyo, Japan) for nuclear evaluation, and were classified into 
three categories, i.e., unfertilized oocytes, monospermic oocytes (two 
pronuclei, 2PN), and polyspermic oocytes (with 2PN or more plus 
swollen sperm head); the number of sperm that had penetrated oo-
cytes was also evaluated. The experiment was done according to the 
process described by Nguyen, et al. [28].

Embryo Culture

After 6 h, oocytes were removed from the fertilization medium, 
and washed three times in porcine zygote medium-3 (PZM-3) to re-
move excessive sperms. The presumptive zygotes were then cultured 
in 100 μL droplets (20 to 30 oocytes per droplet) of PZM-3 covered 
with mineral oil for 7 days. Cleavage and blastocyst rates were evalu-
ated under a stereomicroscope at day-2 and day-7 after insemination 
(insemination day = day-1).

Apoptotic Cell Measurement and Apoptosis Indices

The blastocysts were subjected to Terminal deoxynucleotidyl 
transferase (TdT) d’UTP Nick-End Labeling (TUNEL) staining and cell 
counting for total cell number and apoptotic cells as previously de-
scribed [10,27]. The apoptotic index was calculated as follows: apop-
totic index (%) = (number of positive nuclei/total cell number) × 100.

Statistical Analysis

All data were subjected to analysis of variance (ANOVA) using the 
General Linear Model (GLM) procedure in SAS version 9 (SAS Insti-
tute, Cary NC, USA), followed by Tukey’s test. Percentile data were 
arcsine transformed before statistical analysis and the probability 
at P < 0.05 was considered significantly different between treatment 
groups.

Results
Sperm Penetration Rate

An experiment was designed to evaluate the normal fertilization 
rate of pig oocytes after IVM culture. The results are presented in (Ta-
ble 1) using 141 oocytes for control groups and 182 oocytes for 5 ng/
mL VEGFA supplemented groups. The sperm penetration rates were 
not different among treatment groups (78 vs. 80%, P < 0.05). In the 
presence of VEGFA in the IVM medium, increased monospermic rates 
was observed as compared to those of the control group (85% vs. 
75%, P < 0.05). Similarly, a significant improvement of normal fertil-
ization (Figure 1) rate was also found in the presence of VEGFA during 
IVM compared to the non-VEGF treated control group (68% vs. 58%, 
P < 0.05).

Table 1: Effects of VEGFA supplementation in the maturation medium on in vitro fertilization of porcine oocytes.

Treatment Number of oocytes, n Penetration rate, % (n)1 Monospermic rate, % (n) Normal Fertilization rate (%)2

Control 141 77.73 ± 2.46(111) 74.68 ± 4.35 (53)a 57.73 ± 2.78a

VEGFA  (5 ng/mL) 182 79.79 ± 1.12(95) 85.12 ± 1.59 (69)b 67.95±1.87b

Note: Numbers in the parentheses represent the number of oocytes examined. Data are mean ± SEM from four replicates.
a,bWithin a column, means without the same superscript differ (P < 0.05). 
1Monospermic rate (%): number of monospermic oocytes/total penetrated oocytes × 100. 
2Normal fertilization rate (%): number of monospermic oocytes/total inseminated oocytes × 100. 

IVM: in vitro maturation; IVC: in vitro culture.
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Figure 1: Micrographs representing pronuclear status of in vitro matured porcine oocytes 10 h after in vitro fertilization. 
A.	 A normal fertilized embryo with two forming pronuclei (red arrows). 
B.	 Unfertilized oocyte with MII plate (yellow arrow head). 
C.	 A polyspermic embryo showing three pronuclei (red arrows) Scale bar: 400X.

Cumulative Effects of VEGFA on Embryos’ Development 
During IVM and IVC

We tested the IVM and IVC media in the presence or absence of 
VEGFA with the end-point development of porcine embryo in vitro. 
As shown in (Table 2), presence of VEGFA in both IVM and IVC media 

enhanced blastocyst formation rate (46%) compared to the control 
group (31%, P < 0.05). The total cell number per blastocyst was in-
creased when VEGFA was supplemented in both IVM and IVC media 
(81.8 ± 8.2) or in IVM medium alone (74.41 ± 10), in contrast to that 
from the control group without VEGFA during IVM and IVC (62 ± 11, 
P < 0.05). The apoptotic indices were reduced in all VEGFA-treated 
groups compared to those in the control group (P < 0.05).

Table 2: Effects of VEGFA supplementation in the maturation and the culture media on the development of porcine embryos in vitro.

VEGFA  (5 ng/mL) Numbers of fertilized oocytes, 
n

Cleavage rate,

% ± SEM (n)

Blastocysts rate,

% ± SEM (n)

TCN*/Blastocyst,

% ± SEM (n)

Apoptosis indices,

% ± SEM (n)

IVM IVC

_ _ 75 72.56 ± 2.96 (54) 31.22 ± 3.39a (24) 62.61 ± 11.84 (21)

_ + 75 79.22 ± 2.89 (59) 35.77 ± 4.22a (27) 74.41 ± 10.82 (26)

+ _ 75 71.11 ± 4.84 (53) 34.22 ± 2.11a (26) 64.78 ± 14.11 (22)

+ + 75 80.44 ± 4.24 (60) 46.22 ± 3.47b (35) 81.78 ± 8.37 (30)
Note: Data are mean ± SEM from three replicates. Numbers in the parentheses represent the number of embryos in each category.
a,b Within a column, means without the same superscript differ (P < 0.05).
+: Medium supplemented with VEGFA.
-: Medium without VEGFA supplementation.

*TCN: total cell number.
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Effects of VEGFA on GSH and ROS Levels of Matured Oo-
cytes

To verify how VEGFA relieves oxidative stress from oocytes, we 
checked its optimized concentration effect on the ROS/GSH balance. 
The micrograph represents the intracellular ROS/GSH of the matured 
oocytes, 4-cell stage embryos and blastocysts (Figure 2A). Results 
showed that significant increases of GSH by 3.4, 1.5 and 1.4 folds, re-

spectively, when 5 ng/mL of VEGFA was supplemented in matured 
oocytes, 4-celled embryos and blastocysts compared to the control 
group. Concomitantly, ROS levels were reduced by 0.5, 0.45 and 0.6 
folds, respectively, in matured oocytes, 4-cell stage embryos and blas-
tocysts in the above culture conduction (Figure 2B). The overall trend 
was an increase (P < 0.05) of intracellular GSH levels and decreased 
(P < 0.05) ROS levels when media were supplemented with 5 ng/mL 
of VEGFA.

Figure 2: Epifluorescent images showing glutathione (GSH) and reactive oxygen species (ROS) levels of in vitro matured porcine oocytes, 4-cell 
stage embryos and blastocysts. 
A.	 Representative images for oocytes stained with CellTracker Blue (blue) and H2DCFDA (green) to detect intracellular levels of GSH and 
ROS, respectively.
B.	 The relative fluorescence intensities of GSH and ROS are detected and shown (B). 
MIIOoc: Mature oocyte at metaphase II stage; 4 C: 4-cell stage embryos of development. 
a,bWithin the same developmental stage, bars without the same superscripts differ (P < 0.05).

Discussion
In the present study, starting with similar penetration rates 

among all treatment groups, the IVM medium containing VEGFA 
had greater monospermic rate (and normal fertilization) compared 
with the control group. The highest blastocyst development, total cell 
numbers per blastocyst and reduced apoptotic indices were observed 
when VEGFA was supplemented in both IVM and IVC media. All VEG-
FA–treated embryos had reduced apoptotic indices. In addition, VEG-
FA significantly relieved oocytes from oxidative stress by maintaining 
the ROS/GSH homeostasis.

The limited knowledge on the regulation of oogenesis, folliculo-
genesis and the required conditions for oocytes to undergo proper 
growth, differentiation and maturation, is one of the major factors 
causing the failure in obtaining viable offspring from in vitro matured 
oocytes in both domestic species and humans [3]. Higher levels of 
apoptosis were observed in IVP equine, porcine and bovine blasto-
cysts compared to their in vivo counterparts [29]. The total number of 
cells in each blastocyst produced in vitro ranges from 58 to 139 which 
are much less than 150 to 250 cells in the blastocyst obtained in vivo 
[21]. In the present study, an average of 81 cells per blastocyst was 
obtained with porcine IVF embryos and constitute a good progress 
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regarding porcine embryos IVP. In fact, porcine IVF embryos rarely 
reached 77 cells per embryos [2,5,18,21,28]. Unlike other mammalian 
species, the IVM and IVC platforms in porcine system remain to be 
further improved [5,30,31].

The improvements were observed on the quality of cloned embry-
os and parthenotes in pigs when media are supplemented with VEGFA 
whose effects can be extended or carried over to the IVF embryos. Our 
previous study reported signaling of VEGFA and its receptor 2 along 
with follicle growth up to the preimplantation embryo development 
[19]. Moreover, the addition of VEGFA in culture media improved the 
extrusion of polar body and parthenote quality [19]. Such paracrine 
factor improved IVM of porcine cumulus-oocytes complexes matu-
ration [18,19] and the subsequent development of cloned embryos 
[19,32]. Thus, it is evident that VEGFA functioning as promoter of cell 
survival and proliferative factor is sustained [33].

Although several exogenous factors are used in IVP media, cul-
ture conditions induce excessive production of ROS by embryos. Ex-
ternal protection occurs in follicular and tubal fluids, which mainly 
consists of non-enzymatic antioxidant, such as hypotaurine, taurine 
and ascorbic acid. Internal protection mainly comprises antioxidant 
enzymes including superoxide dismutase, glutathione peroxidase and 
γ-glutamyl cysteine synthetase. The GSH content of oocytes is associ-
ated with the male pronuclear formation and blastocyst development, 
as well as the total cell number of each blastocyst [27,34,35]. An in-
crease in GSH storage is observed when antioxidants, such as ascorbic 
acid [27,34,36] and cysteamine [36], are supplemented in the oocyte 
maturation medium.

In this study, the improved fertilization rate was conceivably at-
tributed to an enhanced cytoplasmic maturation of oocyte conferred 
partly by the increased storage of GSH and the reduced ROS contents 
of porcine oocytes. Polyspermy, referring to fertilization involving 
more than one sperm [37], is a pathological phenomenon that leads 
to developmental failure in various mammalian species. Within the 
female reproductive tract, several mechanisms exist in regulating the 
number and quality of spermatozoa in order to minimize the occur-
rence of polyspermy [38]. Also, an improved embryo culture environ-
ment allowed an increase of normal fertility, total cell number with 
reduced apoptotic indices denoting VEGFA’s involvement in cytopro-
tective and proliferative effects on early embryogenesis. Our previ-
ous study also showed that PI3K/AKT and ERK/MEK mediated the 
effect of VEGF in vitro, as well as that reduced Caspase-3 activation 
was observed [19]. Those cytoprotective and proliferative effects of 
VEGFA were reported [39-42] and the PI3K/AKT and ERK/MEK sig-
naling pathways were found to be involve in these processes [43-46]. 
In tumor cells, VEGF activates the prosurvival signaling in response to 
increasing ROS content in the culture environment [45]. In addition 
to the proliferative and cytoprotective effects, the present study is the 
first to demonstrate VEGFA supplementation positively affected the 
GSH and ROS homeostasis in oocytes and developing embryos [47].

Conclusions and Recommendations 
Exogenous human recombinant VEGFA supplementation at a 

concentration of 5 ng/mL in IVP media improved normal fertilization 
rate, followed by subsequent improved quality of developing embry-
os. Apart from acting as a paracrine/autocrine factor, VEGFA showed 
a strong antioxidant capability in the IVP system in protecting gam-
etes and embryos. VEGFA can therefore be added to IVP system for 
production of competent embryos for agriculture production im-
provement or biomedical investigation such as stem cells, transgenes, 
xenograft studies. Further investigations are required to understand 
the molecular mechanisms behind the action of VEGFA related to its 
signaling pathways.
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