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ABSTRACT

This paper continues the study of the asymptotic properties of the known SAIRP epidemic model 
under stochastic perturbations. The SAIRP epidemic model is described by a system of five nonlinear 
differential equations. It is assumed that the system is influenced by stochastic perturbations that are 
of the type of white noise and are proportional to the deviation of the current system state from one of 
the system equilibriums. It is shown that sufficient conditions of stability in probability for two different 
equilibria of the considered system are formulated via a simple linear matrix inequality (LMI), that can 
be easily studied via MATLAB. Two demonstrative examples illustrate the obtained results via numerical 
simulation of solutions of the considered system of five nonlinear Ito’s stochastic differential equations. 
The research method used here can be applied to a lot of other more complicated models in different 
applications.
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Introduction
During the last years investigations of epidemic models are very 

popular in research (see, for instance, [1-3] and the references there-
in). The so-called SAIRP epidemic model is defined by the following 
system of ordinary differential equations [1]:
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Here it is supposed that the population is subdivided into five 
distinct classes: susceptible individuals (S(t)); asymptomatic infected 
individuals (A(t)); active infected individuals (I(t)); removed (R(t)); 
protected individuals (P (t)). The total population, N (t) = S(t) + A(t) 
+ I(t) + R(t) + P (t), with t ≥0 has a variable size, where the recruit-

ment rate Λ and the natural death rate µ are assumed to be constant. 
The susceptible individuals S(t) become infected by contact with ac-
tive infected I(t) and asymptomatic infected individuals A(t), at a rate 
of infection ( ) ( ) ,

( )
A t I t

N t
θβ + where θ represents a modification parameter 

for the infectiousness of the asymptomatic infected individuals A. It 
is supposed also that all parameters of the system (1.1) are positive 
and, besides, p < 1, u < 1.

In [1] some properties of stability of the system (1.1) equilibria 
are studied. Below, following the method from [4], stability in prob-
ability of two equilibria of the system (1.1) is investigated by the as-
sumption that the system (1.1) is exposed to stochastic perturbations 
that are of the type of the white noise and are directly proportional to 
the deviation of a system state from an appropriate equilibrium.

Equilibria
Assuming that all variables in the system (1.1) are constants, we 

obtain that the equilibria of the system (1.1) are defined by the sys-
tem of algebraic equations

ARTICLE INFO

Received:   September  09, 2023
Published:   October 18, 2023 

Citation: Leonid Shaikhet. On Stability 
of One Mathematical Model of the Epi-
demic Spread Under Stochastic Pertur-
bations. Biomed J Sci & Tech Res 53(3)-
2023. BJSTR. MS.ID.008392.

https://biomedres.us/
http://dx.doi.org/10.26717/BJSTR.2023.53.008392


Copyright@ : Leonid Shaikhet | Biomed J Sci & Tech Res | BJSTR.MS.ID.008392.

Volume 53- Issue 3 DOI: 10.26717/BJSTR.2023.53.008392

44631

(1 (1 )) (1 ) 0,
( )

(1 (1 )) ( ) 0,
( )

( ) 0,
0,

(1 ) ( ) 0, (2.1)

A Ip u p u S P
N t

A I

µ

p u S v A
N t

vA I
I R
p u S P

θβ ω

θβ µ

δ µ
δ µ

ψ

ω µψ

 +
Λ − − − + − + + = 

 
+

− − − + =

− + =
− =
− − + =
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where the basic reproduction number R0 > 1, 

0
( (1 (1 )))( ( ) )( ) . (2.4)

( )( )( (1 ))
p u vR

v p u
β θ δ µ ω µ

µ δ µ ψω µ
− − + + +

=
+ + + + −

Note also that, summing all equations of the system (2.1), we ob-
tain N

µ
∗ Λ
=  for both equilibria (2.2) and (2.3).

Stochastic Perturbations
Let {Ω, 𝔉, P} be a  complete probability space, {𝔉t, t ≥ 0} be a nonde-

creasing family of sub-σ-algebras of 𝔉, i.e., 𝔉t1 ⊂ 𝔉t2 ⊂ 𝔉 for t1 < t2, E be 
the mathematical expectation with respect to the measure P.

Let us suppose that the system (1.1) is exposed to stochastic per-
turbations that are of the type of the white noise and are directly pro-
portional to the deviation of the system state (S(t), A(t), I(t), R(t), P 
(t)) from one of the equilibria (S*, A*, I*, R*, P*). As a result, we obtain 

the system of Ito’s stochastic differential equations [5]
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where σ1, ..., σ5 are constants and w1(t), ..., w5(t) are the mutually 
independent 𝔉t -adapted standard Wiener processes.

Note that the equilibrium (S*, A*, I*, R*, P*) of the deterministic 
system (1.1) is also the solution of the system of Ito’s stochastic dif-
ferential equations (3.1). Stochastic perturbations of this type were 
first proposed in [6] for SIR epidemic model and later also for a lot of 
other different applied models (see [7] and the references therein).

Centralization and Linearization
Consider the nonlinear differential equation

.
( ) ( ( )), (4.1)x t F x t=

where x(t) ∈ Rn and the equation F(x) = 0 has a solution x∗ that is 
an equilibrium of the differential equation (4.1). Using the new vari-
able y(t) = x(t) − x∗, represent the equation (4.1) in the form

.
( ) ( ( )). (4.2)y t F x y t∗= +

It is clear that stability of the zero solution of the equation (4.2) 
is equivalent to stability of the equilibrium x* of the equation (4.1).
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y→= =  where y  is the Eu-
clidean norm in Rn. Using Taylor’s expansion in the form 

*( ) ( ) ( ) ( )FF x y F x J x y o y∗ ∗+ = + +  and the equality F(x*) = 0, we 
obtain the linear approximation 

.
( ) ( ) ( ) (4.3)Fz t J x z t∗=

of the nonlinear differential equation (4.2). So, a condition for the 
asymptotic stability of the zero solution of the linear equation (4.3) 
is also a condition for the local stability of the equilibrium x* of the 
initial nonlinear equation (4.1).

To construct the linear approximation of the system (3.1) let us 
put (′ is the sign of transpose)
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Representing the system (1.1) in the form (4.1) and calculating 
the Jacobian matrix, we get the linear part of the system (3.1) in the 
form.
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where Bi is the matrix with all zero elements besides of bii = σi, i 
=1,…,5:
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In particular, for the equilibrium 0E∗
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Remark 1 Let V = V (z) be a twice differentiable function 

of 5.z R∈  The generator of the equation (4.5) has the form [5]
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Stability
Definition 1

Put y(t) = (S(t), A(t), I(t), R(t), P(t))-(S*, A*, I*, R*, P*). The solution 
(S*, A*, I*, R*, P*) of the system (3.1) is called stable in probability if for 
any 1 20 0andε ε> >  there exists  0δ >  such that y(t) satisfies the 
condition 

0
1 2{sup ( ) }

t
P y t ε ε

≥
> <  for any y(0), such that { (0) } 1P y δ< =

Definition 2 

The zero solution of the equation (4.5) is called:

-mean square stable if for each 0ε > there exists a  0δ >  such 
that 2 0( ) , ,z t tε< ≥E , provided that 2(0) ;z δ<E

-asymptotically mean square stable if it is mean square stable 
and for each initial value z(0), such that 2(0) ,z < ∞E ,the solution z(t) 
of the equation (4.5) satisfies the condition 2lim ( ) 0.

t
z t

→∞
=E

Remark 2

It is known [7] that sufficient conditions for asymptotic mean 
square stability of the zero solution of the linear part of a stochastic 
nonlinear system with the order of nonlinearity higher than one at 
the same time are sufficient conditions for stability in probability of 
the initial nonlinear system solution. So, for investigation of stability 
in probability of the equilibrium (S*, A*, I*, R*, P*) of the system (3.1) 
it is enough to get conditions for asymptotic mean square stability of 
the zero solution of the linear equation (4.5).

Theorem 1

Let for the matrices A and Bi, i = 1,…,5, of the equation (4.5) there 
exists a positive definite matrix P such that the following linear matrix 
inequality 

 

5
' '

1
0 (5.1)i i

i
PA A P B PB

=

+ + <∑                                           

holds. Then the equilibrium (S*, A*, I*, R*, P*) of the system (3.1) 
is stable in probability.
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Proof

Let L be the generator [5] of the equation (4.5). Using the Lyapun-
ov function '( )V z z Pz=  via (4.11) we have

5
' ' '
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5
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z i i
i
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∑

∑

So, if the linear matrix inequality (5.1) holds then via (5.2) 
2( )LV z c z≤ − for some c > 0 and, therefore, the zero solution of the 

linear stochastic differential equation (4.5) is asymptotically mean 
square stable [7]. Via Remark 2 it means that the appropriate equi-
librium (S*, A*, I*, R*, P*) of the nonlinear system (3.1) is stable in 
probability. The proof is completed. 

Example 1 Putting

15, 1, 1, 0.4,
0.15, 0.033, 0.0013, (5.3)
0.7, 0.3, 1.5,

v
p u

µ θ
δ

ψ
ω

β

Λ = = = =
= = =
= = =

from (2.4) and (2.2) we obtain R0 = 0.6371 and N0=15.

0 0 0 0 0( , , , , ) (12.5445,0,0,0,2.4555). (5.4)S A I R P∗ ∗ ∗ ∗ ∗ =

Via MATLAB the following maximal values of the white noise lev-
els were obtained, for which the LMI (5.1) holds and, therefore, the 
equilibrium (5.4) is stable in probability: σ1 = 1.4, σ2 = 0.93, σ3 = 1.2, 
σ4 = 1.4, σ5 = 1.4.

In Figure 1 100 trajectories of the solution of the system (3.1) are 
shown with the initial values S(0) = 22, A(0) = 11, I(0) = 4, R(0) = 8, 
P(0) = 17. All trajectories (S(t)-brown, A(t)-violet, I(t)-blue, R(t)-red, 
P(t)-green) converge to the stable in probability equilibrium (5.4).

Example 2 Putting

15, 1, 1, 0.08,
0.18, 0.033, 0.0013,
0.4, 0.3, 2, (5.5)

v
p u

µ ψθ
δ ω

β

Λ = = = =
= = =
= = =

from (2.4) and (2.3) we obtain R0 = 1.3541 and N0=15.
( , , , , ) (10.8264,3.3317,0.4509,0.1488,0.2422). (5.6)S A I R P∗ ∗ ∗ ∗ ∗

+ + + + + =

Figure 1: 100 trajectories of the system (3.1) solution are shown with

1 2 3 4 5

0 0 0 0 0

15, 1, 1, 0.4, 0.15, 0.033, 0.0013,
0.7, 0.3, 1.5, 1.4, 0.93, 1.2, 1.4, 1.4, (0) 22, (0) 11,

(0) 4, (0) 8, (0) 17, ( , , , , ) (12.5445,0,0,0,2.4555)

v
p u S A
I R P S A I R P

µ θ δ ω
β σ σ σ σ σ

ψ
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Λ = = = = = = =
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Via MATLAB the following maximal values of the white noise lev-
els were obtained, for which the LMI (5.1) holds and, therefore, the 
equilibrium (5.6) is stable in probability: σ1 = 1.5, σ2 = 0.79, σ3 = 1.2, 
σ4 = 1.3, σ5 = 1.3. 

In Figure 2 100 trajectories of the solution of the system (3.1) are 
shown with the initial values S(0) = 7, A(0) = 4.5, I(0) = 9, R(0) = 5.5, 
P(0) = 2.7. All trajectories (S(t)-brown, A(t)-violet, I(t)-blue, R(t)-red, 
P(t)-green) converge to the stable in probability equilibrium (5.6). 

Figure 2: 100 trajectories of the system (3.1) solution are shown with 

1 2 3 4 5

15, 1, 1, 0.08, 0.18, 0.033, 0.0013,
0.4, 0.3, 2, 1.5, 0.79, 1.2, 1.3, 1.3, (0) 7, (0) 4.5,

(0) 9, (0) 5.5, (0) 2.7, ( , , , , ) (10.8264,3.3317,0.4509,0.1488,0.2422)

v
p u S A
I R P S A I R P

µ θ δ ω
β σ σ σ σ

ψ
σ

∗ ∗ ∗ ∗ ∗
+ + + + +

Λ = = = = = = =
= = = = = = = = = =

= = = =

Remark 3 

Note that for the numerical simulation of the Wiener process tra-
jectories in Examples 1 and 2 a special algorithm has been used, de-
scribed in detail in [7].

Conclusion
Asymptotic properties of the SAIRP epidemic model, described 

by a system of five nonlinear differential equations, are studied un-
der stochastic perturbations. It is shown that a sufficient condition 
of stability in probability for two equilibria of the considered system 
is formulated using a simple linear matrix inequality (LMI) that can 

be easily studied via MATLAB. Two demonstrative examples illustrate 
the obtained results via numerical simulation of solutions of the con-
sidered system of five nonlinear Ito’s stochastic differential equations. 
These simulations can be continued for getting more detail analysis of 
the considered epidemic model by real values of the system parame-
ters in some real situations. The research method used here can be 
applied to a lot of other more complicated models in different appli-
cations.
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