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ABSTRACT

Controlled Ovarian Stimulation (COS) is one of the crucial components of assisted reproductive technology. 
Progestin-Primed Ovarian Stimulation (PPOS) is a recently popularized COS method; however, the exact 
mechanism by which it suppresses ovulation remains unclear. kisspeptin, situated upstream of gonadotropin-
releasing hormone (GnRH), promotes the secretion of follicle-stimulating hormone and luteinizing hormone, 
thereby inducing ovulation. In this study, we continuously monitored plasma kisspeptin levels in patients (n 
= 5) during PPOS. This study revealed no significant changes in plasma kisspeptin levels during PPOS, even 
immediately before oocyte retrieval. Additionally, we evaluated the expression changes of kisspeptin in the 
immortalized hypothalamic neuronal cell model mHypoA-50 following administration of the progestin used 
in PPOS. Progestin administration significantly suppressed kisspeptin gene expression in mHypoA-50 cells, 
which was increased with estrogen or GnRH stimulation. In conclusion, progestin may inhibit the increase in 
kisspeptin during PPOS, thereby suppressing ovulation.
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Introduction
The global prevalence of infertility is 8%–12%, with Assisted 

Reproductive Technology (ART) as an effective treatment method 
[1]. ART consists of three principal components, including oocyte 
retrieval, fertilization and embryo culture, and embryo transfer. 
Among these, the achievement of high-quality oocyte retrieval is 
of utmost importance [2]. The appropriate choice of controlled 
ovarian stimulation (COS) is crucial for high-quality oocyte 
collection. Recently, progestin-primed ovarian stimulation (PPOS) 
has become popular, although the exact mechanism by which it 
suppresses ovulation remains unclear [3]. Kisspeptin, a hypothalamic 
neuropeptide hormone encoded by the Kiss1 gene, acts through the 
hypothalamic kisspeptin 1 receptor (Kiss1R) to induce the release 

of endogenous gonadotropin-releasing hormone (GnRH), which in 
turn increases Follicle-Stimulating Hormone (FSH) and Luteinizing 
Hormone (LH) secretion from the pituitary gland, thereby inducing 
ovulation [4]. Kisspeptin plays a pivotal role in reproductive function 
by regulating the hypothalamic–pituitary–gonadal axis. One of the 
functions of progesterone (P4) in humans is to suppress GnRH and LH 
secretion, and thus ovulation, but the detailed mechanism of action 
remains unclear [5]. Estradiol (E2) in rodents acts on kisspeptin 
neurons in the Anteroventral Periventricular Nucleus (AVPV) and 
Arcuate Nucleus (ARC) regions, thereby adjusting GnRH secretion 
through positive and negative feedback, respectively [6]. 

Additionally, a rodent study revealed that P4 administration to 
the AVPV region suppressed ovulation [7], indicating that progestin 
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may suppress ovulation in humans by inhibiting kisspeptin gene 
expression. In this study, we continuously monitored plasma 
kisspeptin levels during PPOS to investigate their changes. Further, 
we measured changes in kisspeptin expression with progestin 
administration in mHypoA-50 cells, which were derived from mouse 
Kiss-1-expressing neurons in the AVPV region.

Materials and Methods
Ethical Approval

The Ethical Review Board of Osaka University Hospital (No. 
21113-2) approved this study. Samples were obtained from patients 
who signed written informed consent before inclusion and who 
underwent PPOS at the Reproduction Clinic Osaka, Osaka, Japan, from 
November 2021 to January 2022.

Serum and Plasma Hormone Profiles During PPOS

Table 1 shows the baseline characteristics of five patients during 
PPOS. Kisspeptin-54 was measured in plasma from days 2–5 of 
the menstrual cycle to the oocyte pick-up day using a commercial 
enzyme-linked immunosorbent assay kit (Peninsula Laboratories 
International, Inc.; San Carlos, CA) [8]. Blood samples were 
immediately transferred into a polypropylene tube that contains 
ethylenediaminetetraacetic acid on ice and then centrifuged for 15 
min at 1,600 g at 4 ℃. Plasma layer samples were collected and stored 
at −80 °C. The concentrations of FSH, LH, E2, P4, and kisspeptin-54 are 
presented in Figure 1.

Table 1: Baseline characteristics of patients undergoing the PPOS protocol: serum and plasma hormone profiles.

PPOS (n = 5)

Age at oocyte retrieval (years) (median [IQR]) 32.0 [30.0, 37.0]

Serum AMH level (ng/mL) (median [IQR]) 4.88 [4.12, 5.42]

Total gonadotropin dose (IU) (median [IQR]) 1800 [1650, 2400]

Basal hormone level (median [IQR])

FSH (mIU/mL) 8.3 [6.9, 8.6]

LH (mIU/mL) 5.8 [4.9, 7.0]

E2 (pg/mL) 39.8 [32.5, 55.4]

P4 (ng/mL) 0.5 [0.5, 0.6]

Hormone level on last visit before OPU (median [IQR])

FSH (mIU/mL) 18.5 [15.2, 25.5]

LH (mIU/mL) 2.8 [2.2, 9.5]

E2 (pg/mL) 1891 [1577, 2569]

P4 (ng/mL) 1.5 [0.8, 1.5]

No. of oocyte retrieval (median [IQR]) 20.0 [11.0, 30.0]

Note: AMH: anti-müllerian hormone; E2: estradiol; FSH: follicle-stimulating hormone; IQR: interquartile range; LH: luteinizing hormone; OPU: oocyte 
pick-up; P4: progesterone; PPOS: progestin-primed ovarian stimulation.
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Note: E2: estradiol; LH: luteinizing hormone; ns: nonsignificant; OPU: oocyte pick-up; PPOS: progestin-primed ovarian stimulation.
P < 0.05 was considered statistically significant.; **, P < 0.01; ***, P < 0.001c; ns, not significant (P > 0.05).
Figure 1: Trends of serum and plasma hormone profiles during the PPOS protocol.
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Materials

The following chemicals and reagents were obtained from the 
indicated sources: GIBCO fetal bovine serum (FBS) (Invitrogen, 
Thermo Fisher Scientific, Waltham, MA, USA); Dulbecco’s modified 
Eagle’s medium (DMEM) at 4.5 mg/mL of glucose (Invitrogen); 
phenol red-free DMEM (FUJIFILM Wako Chemicals, Osaka, Japan); 
charcoal-stripped FBS (Hyclone, Logan, UT); penicillin–streptomycin 
and water-soluble β-estradiol (Sigma-Aldrich Co., St. Louis, MO); and 
GnRH and Chlormadinone Acetate (CMA) (Fuji Pharmaceutical Co., 
Tokyo, Japan).

Cell Culture and Stimulation

CEDAR-LANE (Ontario, Canada) supplied mHypoA-50 cells. 
Cells were plated in 60-mm tissue culture dishes and incubated with 
high-glucose DMEM containing 10% heat-inactivated FBS and 1% 
penicillin–streptomycin at 37 ℃ under a humidified atmosphere of 
5% CO2. The cell culture medium was changed to phenol red-free high-
glucose DMEM with 10% charcoal-stripped FBS and 1% penicillin–
streptomycin for a minimum of 24 h before the reagent and vehicle 
treatments in the mHypoA-50 cells. Each experiment used cells grown 
in culture plates to 80% confluence. Cells were incubated without 
(vehicle) or with the test reagents for the indicated concentrations 
and periods when stimulated with the test reagents. RNA preparation, 
reverse transcription (RT), and quantitative real-time polymerase 
chain reaction (PCR) A Nucleo Spin RNA Plus Kit (Takara Bio Inc., 
Shiga, Japan) was used to extract total RNA, and Super Script IV 
VILO Master Mix (Invitrogen) was used to synthesize cDNA from 
2.5 μg of total RNA, following the manufacturer’s instructions. The 
following RT-PCR protocol was used for the initial identification of 
mPRα, mPRβ, and PgRMC1 mRNAs in mHypoA-50 cells. The forward 
primer for mPRα was 5ʹ-CAGAAGCCTCCGCAACCAGAAC-3ʹ, and the 
reverse primer was 5ʹ-GAGCCACAGCACTGAACGAGAG-3ʹ, whereas 
the forward primer for mPRβ was 5ʹ-TGACGACTGCCATCCTAGAGCG-
3ʹ, and the reverse primer was 5ʹ-CAATGCCCCTGCCTCCACAAAG-3ʹ. 
The forward primer for PgRMC1 was 5ʹ-AGGGCAGGAACAGGTATGTG-
3ʹ, and the reverse primer was 5ʹ-CCAAAGGAGTATTACCCAAGACC-3ʹ. 

This primer sets generated products of 310, 305, and 205 
bp for mPRα, mPRβ, and PgRMC1, respectively. Thermal cycling 
conditions were as follows: one cycle at 94 °C for 5 min; 35 cycles 
at 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 min; one cycle 
at 72 °C for 5 min. Amplified PCR products were run on a 2.0% 

agarose gel and investigated for appropriate size band production. 
Quantitative real-time PCR with Taqman™ Fast Advanced Master Mix 
(Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA) 
was used to measure the mRNA expression of kisspeptin (Kiss1, 
Mm03058560_m1). Samples were run in triplicate using optical 96-
well plates, and relative gene expression levels were evaluated using 
the 2−ΔΔCT method. Gene expression was normalized to histone 
3a (Mm00517632_s1) mRNA levels, which were used as internal 
controls for the gene expression assay [9]. Each measurement is 
based on three biological replicates, and the values are presented as 
the means ± Standard Error of the Mean (SEM).

Statistical Analyses

One-way analysis of variance with the post hoc Tukey–Kramer 
test and GraphPad Prism version 8.0 were used for statistical analyses.

Results
Plasma Kisspeptin Levels During PPOS

Table 1 shows the baseline characteristics of patients undergoing 
PPOS. The median age and anti-müllerian hormone level were 32.0 
years (interquartile range [IQR]: 30.0–37.0) and 4.88 (ng/mL) 
(IQR: 4.12–5.42), respectively. While E2 serum levels continuously 
increased, no significant differences in plasma kisspeptin-54 and 
serum LH values were found during PPOS. No cases of ovulation were 
observed before oocyte retrieval.

Effect of CMA on Kiss-1 Gene Expression in mHypoA-50 
Cells

We investigated the effect of CMA on kiss-1 gene expression, 
which was increased with E2 and GnRH treatment, in mHypoA-50 
cells. Expression of estrogen and GnRH receptors was confirmed 
in mHypoA-50 cells [9,10]. RT-PCR analysis revealed that the cells 
expressed mRNA for mPRα, mPRβ, and PgRMC1 (Figure 2a). E2 
stimulation significantly increased Kiss-1 mRNA expression in 
mHypoA-50 cells by 1.47 ± 0.13-fold at 100 nM of E2 ([vehicle vs. E2], 
P < 0.05) and 1.06 ± 0.13- fold at 100 nM of E2 + 1.5 ng/mL of CMA ([E2 
vs. E2 + CMA], P < 0.05) (Figure 2b). GnRH stimulation significantly 
increased Kiss-1 mRNA expression in mHypoA-50 cells by 1.41 ± 
0.01-fold at 100 nM of GnRH ([vehicle vs. GnRH], P < 0.001) and 1.05 
± 0.07-fold at 100 nM of GnRH + 1.5 ng/mL of CMA ([GnRH vs. GnRH 
+ CMA], P < 0.001) (Figure 2c).
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Note a: mPRα, mPRβ, and PgRMC1 expression in mHypoA-50 cells.
RT-PCR analysis revealed mRNA expression of mPRα, mPRβ, and PgRMC1 in mHypoA-50, mouse uterus (U), and mouse liver (L). PCR products 
were resolved in 2.0% agarose gels and visualized with ethidium bromide staining.
P < 0.05 was considered statistically significant.; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
E2: estradiol; CMA: chlormadinone acetate; GnRH: gonadotropin-releasing hormone; mPRα: membrane progesterone receptor alpha; mPRβ: 
membrane progesterone receptor beta; PgRMC1: progesterone receptor membrane component 1; RT-PCR: reverse transcription polymerase chain 
reaction
Figure 2: 
a: Effects of CMA on Kiss-1 mRNA expression in mHypoA-50 cells.
b, c: mHypoA-50 cells were treated with 100 nM of E2 (b) or 100 nM of GnRH (c) for 24 h and CMA for 4 h.

Discussion
COS enables the collection of a large number of oocytes in a single 

retrieval and improves cumulative pregnancy rates as the number 
of retrieved oocytes increases, thereby demonstrating their clinical 
efficacy [11]. However, ovulation suppressant administration is 
essential during COS to prevent breakthrough ovulation. The PPOS 
method uses progestin as an ovulation Inhibitors and is reported 
to be cost-effective and simple compared with other methods and 
yields reproductive outcomes, including ovulation suppression rates, 

comparable with those of other methods [3,12]. However, recent 
reports revealed a possible deterioration in the quality of embryos and 
a decrease in pregnancy rates [13,14]. Furthermore, slight increases 
in P4 levels before natural ovulation have potentially induced an LH 
surge, indicating that the exact mechanism by which P4/progestins 
suppress ovulation remains unclear [15]. The patients in our study 
were undergoing COS, and no cases of ovulation before oocyte 
retrieval were observed, confirming the ovulation-suppressing effect 
of progestin. Kisspeptin, a neuropeptide hormone that originates in 
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the hypothalamus, is encoded by the Kiss1 gene and exerts its effect 
via Kiss1R located in the hypothalamus, thereby facilitating the 
release of endogenous GnRH [4]. Pubertal development was absent in 
families with Kiss1R mutations, thereby establishing an association 
between kisspeptin and reproduction [16]. Kisspeptin acts on various 
tissues, including the hypothalamus, ovaries, uterus, and placenta, 
thereby regulating their functions [6]. 

Kisspeptin in humans and many other species increases FSH and 
LH secretion from the pituitary gland, thereby triggering ovulation 
[4]. A single-blinded placebo-controlled physiological study [17] 
revealed that GnRH administration did not increase kisspeptin 
levels, indicating that kisspeptin operates upstream of GnRH. Two 
randomized, placebo-controlled, parallel-group, dose-finding trials 
(Phase I and Phase IIa) revealed that kisspeptin receptor agonist 
(MVT-602) administration induced an LH surge of similar amplitude 
to the physiological LH surge, indicating its use as a trigger for 
oocyte maturation [4]. Furthermore, the administered dose of MVT-
602 induced a dose-dependent increase in LH levels [4]. Plasma 
kisspeptin concentrations increase before natural ovulation during 
the menstrual cycle and correlate with an increase in LH levels [18]. 
This study revealed that kisspeptin and LH concentrations did not 
increase before oocyte retrieval, indicating that LH surge suppression 
by progestin could be due to kisspeptin level reduction. The ovulation 
control mechanism via kisspeptin in rodents is different from humans, 
but rodents serve as an excellent model for investigating aspects that 
are difficult to analyze in humans. GnRH neurons in the hypothalamus 
do not express estrogen or P4 receptors in both humans and rodents 
[19]. There are two types of kisspeptin-producing neurons located in 
the hypothalamus: the Arcuate Nucleus (ARC) and the Anteroventral 
Periventricular Nucleus (AVPV) [19]. 

Estrogen suppresses Kiss1 gene expression in the former 
(negative feedback) and promotes it in the latter (positive feedback). 
Additionally, the former regulates pulsatile GnRH secretion 
(promoting follicular development), whereas the latter regulates 
surge-like GnRH secretion (inducing an LH surge and ovulation) [6]. 
In rats, kisspeptin neurons express estrogen and P4 receptors, which 
act on kisspeptin secretion from these neurons to regulate ovulation 
[20]. Studies have shown that P4 administration suppresses the LH 
surge, and RU486 injection (a P4 receptor antagonist) into the AVPV 
region increases LH secretion, indicating that suppression of the 
LH surge through P4 in rats involves AVPV neurons [20]. Estrogen 
administration in mice increases kisspeptin neurons in AVPV, whereas 
it decreases in ARC [21]. Furthermore, P4 administration suppressed 
the LH surge induced by estrogen administration, indicating the 
ovulation-suppressing effect of P4 [7]. However, the LH surge was 
not suppressed in groups administered both P4 and kisspeptin, 
indicating that P4’s ovulation-suppressing function may act upstream 
of kisspeptin, thereby controlling its secretion. mHypoA-50 cells, 
derived from mouse Kiss-1-expressing neurons in the AVPV region, 
have confirmed Kiss-1 and estrogen receptor expression, as well 

as GnRH/GnRH receptors [9,10]. Furthermore, we confirmed P4 
receptor expression in mHypoA-50 cells and revealed that progestin 
(CMA) suppresses kisspeptin gene expression induced by E2 or GnRH. 

The mechanisms of ovulation control differ between rodents 
and humans, but progestin in humans may suppress kisspeptin 
secretion through upstream mechanisms, thereby inhibiting LH 
surge occurrence. Plasma kisspeptin levels in nonpregnant adult 
women vary according to previous reports. Previous studies have 
reported plasma kisspeptin concentrations to be 1.65 ± 0.1 ng/mL 
[mean ± SEM], consistent with our findings [18]. Other studies have 
documented both lower [22] and higher concentrations [23] than 
those observed in our examination. The half-life of kisspeptin is short 
[4,24], and it is easily degraded, making the sample collection and 
preservation methods crucial. Studies retrospectively investigated 
the relationship between plasma kisspeptin levels and miscarriage 
[8,25] have also been published, proving the feasibility of measuring 
serum kisspeptin concentrations. Our study used the same assay 
system. Furthermore, our research did not establish a control group 
without the use of ovulation suppressants in COS, thereby not 
directly proving the suppression of plasma kisspeptin by progestin. 
However, conducting COS without ovulation suppressants is ethically 
untenable. An increase in estrogen levels can induce an LH surge, 
while plasma kisspeptin concentrations increase before ovulation 
even in natural menstrual cycles with lower estrogen levels [18]. 
Therefore, kisspeptin levels are expected to increase in this COS if 
progestin had not been used. Further research with an increased 
sample size is essential to confirm our study results. In summary, our 
human plasma analysis during PPOS and the additional experiments 
with mHypoA-50 cells indicate that PPOS with progestin significantly 
suppressed the LH surge rate, which may be due to the suppression 
of kiss-1 gene expression in the hypothalamus.
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